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A New Practically Efficient Interior Point Method for LP

Katta G Murty1

Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117, USA

Abstract

In this paper we briefly review the importance of LP (linear programming), and Dantzig’s main contributions to OR
(Operations Research), mathematics, and computer science. In [11, 3] gravitational methods for LP have been introduced.
Several versions exist. The three main versions discussed there use a ball of(a): 0 radius, (b): small positive radius,
and (c): the ball of largest possible radius with the given center that will completely fit within the polytope, with the
option of changing its radius as the algorithm progresses. In versions(a) and (b), after the first move, the center of the
ball always remains very close to the boundary (because the ball hugs the boundary), and hence these versions behave
like other boundary algorithms such as the simplex algorithm in terms of exponential complexity in the worst case [9].

Here we discuss a gravitational method of type(c) that behaves like an interior point method [8,20, 21]. To guarantee
that the ball has the largest possible radius, it uses a new centering strategy that moves any interior feasible solution
x0 to the center of the intersection of the feasible region withthe objective hyperplane throughx0, before beginning the
gravitational descent moves. We show that this strategy leads to a strongly polynomial algorithm for LP in terms of the
number of centering steps. Also, using this centering strategy, we discuss a method that solves LPs efficiently using no
matrix inversions.

Key words: Linear programming (LP), Dantzig’s simplex method, boundary methods, gravitational method, interior
point method, avoiding zigzagging, solving LPs without matrix inversions, strongly polynomial algorithm for LP

I dedicate this paper to the memory of George Dantzig who has been instrumental for myself getting into a career
of research in Linear Programming and Operations Research.

1. Brief History of Algorithms for Solving Systems
of Linear Inequalities

L inear algebra dealing with methods for solving sys-
tems of linear equations is the classical subject that

initiated the study of mathematics long time ago. The
most effective methods for solving systems of linear
equations have been discovered over 2500 years ago,
these methods are still the leading algorithms in use
today. Even thoughlinear equations have been con-
quered thousands of years ago, systems of linear in-
equalities remained inaccessible until the middle of the
20th century.

For any matrixD, we use the symbolsDi., D.j to
denote thei-th row, j-th column ofD. If D is of order
m×n, andS ⊂ {1, . . . , m}, DS. denotes the submatrix

Email: Katta G Murty [murty@umich.edu].
1 For a brief account of my experience with George
B Dantzig, please visit http://www.informs.org/History
/dantzig/remmurty.htm

of D consisting of rowsDi. for all i ∈ S. We denote
the cone consisting of all the nonnegative combinations
of row vectors ofD by Rpos(D). For any vectory, ||y||
denotes its Euclidean norm. For any setP, ||P || denotes
its cardinality.

The following theorem relates systems of linear in-
equalities to systems of linear equations.
Theorem 1 Consider the system of linear inequalities

Ax ≥ b (1)

whereA = (aij) is anm×n matrix andb = (bi) ∈ Rm.
So, the constraints in the system areAi.x ≥ bi , i ∈
{1, . . . , m}. If this system has a feasible solution, then
there exists a subsetP = {p1, . . . , ps} ⊂ {1, . . . , m}
such that every solution of the system of equations

Ai.x = bi, i ∈ P

is also a feasible solution of the original system of linear
inequalities (1).

c© 2006 Preeminent Academic Facets Inc., Canada. Online version: http://www.facets.ca/AOR/AOR.htm. All rights reserved.
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Proof: Let K denote the set of feasible solutions of (1).
For anyx ∈ K the i-th constraint in (1) is said to be
activeat x if Ai.x = bi, inactiveif Ai.x > bi.

We will now describe a procedure consisting of repi-
titions of a general step beginning with an initial point
x0 ∈ K.

General Step:Let xr ∈ K be the current point, and
Pr = {i : ith constraint in (1) is active atxr}.

Case 1: Pr = ∅. In this casexr is an interior point
of K. Let x̄ be any solution of one equationAi.x = bi

for somei. If x̄ ∈ K, definexr+1 = x̄.
If x̄ 6∈ K, find λ̄, the maximum value ofλ such that

xr+λ(x̄−xr) ∈ K. Thenxr+λ̄(x̄−xr) must satisfy at
least one of the constraints in (1) as an equation, define
xr+1 = xr + λ̄(x̄ − xr).

Go back to another repetition of the general step with
xr+1 as the current point.

Case 2: Pr 6= ∅, and eitherxr is the unique solu-
tion of the system of equations{Ai.x = bi : i ∈ Pr},
or Pr = {1, . . . , m}. In either of these casesP = Pr

satisfies the requirement in the theorem, terminate.

Case 3: Pr is a nonempty proper subset of
{1, . . . , m} and the system{Ai.x = bi : i ∈ Pr} has
alternate solutions. LetHr = {x : Ai.x = bi, i ∈ Pr}.
Let t be the dimension ofHr, and let{y1, . . . , yt} be
a basis for the subspace{Ai.y = 0 : i ∈ Pr}.

If each of the pointsy ∈ {y1, . . . , yt} satisfies
Ai.y = 0 for all i ∈ {1, . . . , m}, thenP = Pr satisfies
the requirement in the theorem, terminate.

Otherwise letȳ ∈ {y1, . . . , yt,−y1, . . . ,−yt} sat-
isfy Ai.ȳ < 0 for somei ∈ {1, . . . , m}\Pr. Find λ̄, the
maximum value ofλ such thatxr + λȳ ∈ K, define
xr+1 = xr + λ̄ȳ.

Go back to another repetition of the general step
with xr+1 as the current point.

The subsets of indices generated in this procedure
satisfyPr ⊂ Pr+1 and |Pr+1| ≥ 1 + |Pr|. So after at
most m repetitions of the general step the procedure
must terminate with a subsetP of {1, . . . , m} satisfying
the conditions in the theorem.

In systems of linear inequalities like (1) appearing in
applications, typicallym ≥ n.

This theorem states that every nonempty polyhedron
has a nonempty face that is an affine space. It can be

used to generate a finite enumerative algorithm to find
a feasible solution to a system of linear constraints con-
taining inequalities. It involves enumeration over sub-
sets of the inequalities in the system. For each subset do
the following: eliminate all the inequality constraints in
the subset from the system. if there are any inequalities
in the remaining system change them into equations.
Find any solution of the resulting system of linear equa-
tions. If that solution satisfies all the constraints in the
original system, done, terminate. Otherwise, repeat the
same procedure with the next subset of inequalities. At
the end of the enumeration, if no feasible solution of
the original system has turned up, it must be infeasible.

However, if the original system hasm inequality con-
straints, in the worst case this enumerative algorithm
may have to solve2m systems of linear equations before
it either finds a feasible solution of the original system,
or concludes that it is infeasible. The effort required
grows exponentially with the number of inequalities in
the system in the worst case.

A Paradox: Many young people develop a fear of
mathematics and shy away from it. But since childhood I
had a fascination for mathematics because it presents so
many paradoxes. Theorem 1 also presents an interesting
paradox.

As you know, linear equations can be transformed
into linear inequalities by replacing each equation with
the opposing pair of inequalities. But there is no way
a linear inequality can be transformed into linear equa-
tions. This indicates that linear inequalities are more
fundamental than linear equations.

But this theorem shows that linear equations are the
key to solving linear inequalities, and hence are more
fundamental. Again we will show in Section 12 that lin-
ear inequalities may play an important role for solving
linear equations.

Crude examples of linear programming models have
started appearing in published literature from about
mid-18th century. In early 19 century Fourier published
a geometric version of the principle behind the simplex
algorithm for a linear program (vertex to vertex descent
along the edges to an optimum) but did not discuss
how this descent can be accomplished computationally
on systems stated algebraically. Fourier also general-
ized the classical elimination method for solving linear
equations into an elimination method for solving sys-
tems of linear inequalities. The method called Fourier
elimination, (or Fourier-Motzkin elimination) method
is very elegant theoretically. However, the elimination
of each variable adds new inequalities to the remaining
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system, and the number of these new inequalities grows
exponentially as more and more variables are elimi-
nated. So, this method is also not practically viable
except for very small problems.

Before the 2nd World War (1930’s) Kantarovich [7]
developed ideas of LP models, dual multipliers, and the
main ideas of the simplex algorithm, but his work was
somewhat incomplete for the computational version of
the algorithm. In mid-20th century Dantzig developed
the complete simplex algorithm, and also showed how
systems of linear inequalities can be solved using it on
the Phase I linear programming formulation for the sys-
tem, this was the first complete, practically and com-
putationally viable method for solving systems of lin-
ear inequalities. So,Linear Programming (LP) , can
be considered as the branch of mathematics which is
an extension of linear algebra to solve systems oflin-
ear inequalities. The development of LP is a landmark
event in the history of mathematics and its applications
that brought our ability to solve general systems of lin-
ear constraints (including linear equations, inequalities)
to a state of completion.

2. The Importance of LP

LP has now become a dominant subject in the devel-
opment of efficient computational algorithms, study of
convex polyhedra, and in algorithms for decision mak-
ing. But for a short time in the beginning, its potential
was not well recognized.Dantzig tells the story of how
when he gave his first talk on LP and his simplex method
for solving it at a professional conference, Hotelling (a
burly person who liked to swim in the sea, the popu-
lar story about him was that when he does, the level of
the ocean raises perceptibly) dismissed it as unimpor-
tant since everything in the world is nonlinear. But Von
Neumann came to the defense of Dantzig saying that
the subject will become very important. See Page xxvii
of [Dantzig, Thapa, 4, 1997]. The preface in this book
contains an excellent account of the early history of LP
from the inventor of the most successful method in OR
and in the mathematical theory of polyhedra.

Von Neumann’s early assessment of the importance
of LP turned out to be astonishingly correct. Today, the
applications of LP in almost all areas of science are
so numerous, so well known and recognized that they
need no enumeration. Also, LP seems to be the basis for
most of the efficient algorithms for many problems in
other areas of mathematical programming. Many of the
successful approaches in nonlinear programming, dis-

crete optimization, and other branches of optimization
are based on LP in their iterations. Also, with the devel-
opment of duality theory and game theory (Gale [6]),
LP has also assumed a central position in economics.

3. Algorithms Used for Solving LPs Today

The simplex method developed by Dantzig in the
1940s is still the dominant algorithm in use for solving
LPs. The simplex method exhibits exponential growth
in the worst case, but its performance in practice has
been outstanding, and is being improved continually by
developments in implementation technologies. It is a
one-dimensional boundary methodin the sense that it
follows a path along the edges (one-dimensional bound-
ary faces) of the set of feasible solutions of the LP. In
each iteration it needs either updating the inverse or its
factorization, or computing the inverse of a matrix of
order equal to the number of constraints in the LP not
counting the bounds on individual variables (typically
the smallest dimension of the coefficient matrix for the
problem) usually denoted in the literature by the sym-
bol m.

In the late 1900s, Stimulated by Karmarker’s work [8]
a variety of interior point methods (IPMs) were de-
veloped for LP [1, 8, 20, 21]. These IPMs follow a
path through the interior of the set of feasible solutions.
Among them the ones that give the best performance
try to follow the central path(path through a mathe-
matically defined center of the set of feasible solutions)
approximately. They are based on very elegant theory,
and converge to a near optimum in polynomial time.
In practice the number of iterations needed by them is
much smaller than that for the simplex method, but each
of these steps is much harder and more complex as it
needs the inversion of a matrix of orderm or larger
(so each of these steps has complexitym times larger
than the complexity of a step in the simplex method).
Also taking advantage of sparsity in their implementa-
tions is a much more complex task than that in imple-
mentations of the simplex method. The IPMs have been
observed to give slightly better performance than the
simplex method only on large scale sparse problems.

All these methods in use today need either the updat-
ing of a matrix inverse or its factorization, or inversion
of a matrix in each step, this is the hard part of solving
LPs in spite of all the improvements that have occurred
so far. It seems that practitioners are quite content with
obtaining a solution not necessarily optimal, but close
to being so, but they want a method that can obtain such
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a solution much faster than existing methods.

4. Dantzig’s Contributions to Operations Research
(OR), Mathematics, and Computer Science

When he introduced the complete version of the sim-
plex method as a computational algorithm for solving
LPs in the late 1940s, Dantzig made many important
contributions. We discuss some of these briefly here.

Contributions to OR: The simplex method is the
first effective computational algorithm for one of
the most versatile mathematical models in OR. Even
though LP and also the simplex method for solving it
originated much earlier as explained in Section 1, it
started becoming prominent only with Dantzig’s work,
and OR was just beginning to develop around that
time. The success of the simplex method is one of the
root causes for the phenomenal development and the
maturing of LP, mathematical programming in general,
and OR, in the 2nd half of the 20th century.

Contributions to Mathematics and Computer Sci-
ence: Dantzig has made fundamental contributions to
the mathematical study of convex polyhedra (a classical
subject being investigated by mathematicians for more
than 2000 years), and linear algebra (also a classical
subject with an even longer history).

We could only see drawings of 2-dimensional poly-
hedra before Dantzig’s work. Polyhedra in higher di-
mensions could only be visualized through imagination.
The primal simplex pivot steps that Dantzig developed
are the first computational steps for actually tracing an
edge (either bounded or unbounded) of a convex poly-
hedron. It opened a revolutionary new computational
dimension in the mathematical study of convex polyhe-
dra, and made it possible to visualize and explore higher
dimensional polyhedra through computation. The sim-
plex method enriched the mathematical study of convex
polyhedra manyfold.

Linear algebra is the classical subject with the elim-
ination method (also called the Gaussian (G), Gauss-
Jordan (GJ) elimination methods in slightly different
versions) that has a history of over 2500 years for solv-
ing systems of linear equations. But it did not have ef-
fective techniques for handling systems of linear con-
straints involving inequalities. Even though the Fourier-
Motzkin elimination method developed in the 19th cen-
tury could handle inequalities, it is not practically ef-

fective except for very small problems. The simplex
method is the first effective computational method for
solving general systems of linear constraints. Because
of this, LP can be considered as the 20th century exten-
sion of linear algebra to solve systems of general linear
constraints.

We could also consider important pedagogic im-
provements that Dantzig contributed to linear algebra.
He would state all the algorithmic steps in the GJ
elimination method using the fundamental tool of row
operations on the detached coefficient tableau for the
system with the variable corresponding to each column
entered in a top row in every tableau. This makes it
easier for young students to see that the essence of
this method is to take linear combinations of equa-
tions in the original system to get an equivalent but
simpler system from which a solution can be read out.
In descriptions of the GJ method in most mathemat-
ics books on linear algebra, the variables are usually
left out. Also, they state the termination condition to
be that of reaching the RREF (reduced row echelon
form, a tableau is defined to be in RREF if it contains
a full set of unit vectors in proper order at the left
end). Dantzig realized that it is not important that all
unit vectors be at the left end of the tableau (they can
be anywhere and can be scattered all over); also it is
not important that they be in proper order from left to
right. He developed the very simple data structure (this
phrase means a strategy for storing information gener-
ated during the algorithm, and using it to improve the
efficiency of that algorithm, perhaps this is the first in-
stance of such a structure in computational algorithms)
of associating the variable corresponding to therth unit
vector in the final tableau as therth basic variable or
basic variable in therth row; and storing these basic
variables in a column on the tableau as the algorithm
progresses. This data structure makes it easier to read
the solution directly from the final tableau of the GJ
method by making all nonbasic variables = 0; and the
rth basic variable = therth updated RHS constant, for
all r. Dantzig called this final tableau thecanonical
tableau to distinguish it from the mathematical con-
cept of RREF. It also opened the possibility of pivot
column selection strategies instead of always selecting
the leftmost eligible column in this method.

Another important contribution of Dantzig, the re-
vised simplex method, has very important consequences
to the GJ method. All the linear algebra books state that
if the equation “0 = a” (where a is a nonzero num-
ber) shows up in one of the tableaus during the appli-
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cation of the GJ method on the system, then the system
is infeasible. Whenever such an equation “0 = a” ap-
pears, it is also helpful if the method can produce the
row vectorπ of coefficients in a linear combination of
constraints in the original system that yields this incon-
sistent equation. This vectorπ is called anevidence (or
certificate) of infeasibility for the original system. But
with the usual descriptions of the GJ method to get an
RREF or canonical tableau, this evidence is not avail-
able when the infeasibility conclusion is reached. Ex-
ecuting the GJ method using the basis inverse in the
revised simplex format has the great advantage that at

Gravitational

force

Fig. 1. The dashed lines indicate the path taken by a point ball
beginning at the top vertex inside a tubular network for the
edges of the feasible region of an LP under the gravitational
force pulling it towards the optimum.

termination we either get a feasible solution of the orig-
inal system, or evidence of its infeasibility; besides be-
ing computationally efficient. For details on this version
of the GJ method, see the freshman-sophomore level
linear algebra web-book with an OR focus and with the
pedagogic improvements mentioned above, Murty[14].

5. The Gravitational Method for LP

As pointed out in [2], the path taken by the simplex
algorithm to solve an LP can itself be interpreted as
the path of a point ball falling under the influence of
a gravitational force inside a thin tubular network of
the one dimensional skeleton of the feasible region in
which each vertex is open to all the edges incident at it.
See Figure 1 for a 2-dimensional illustration.

Starting about 20 years ago, Murty[11], Chang and
Murty[3] developed newer methods for LP based on the
principle of gravitational force. We consider the LP in
the form

Gravitational

force

x
0

Fig. 2. A 2-dimensional polytope and its faces on which the
ball rolls down (dashed path) to the optimum.

maximize πb (2)

subject to πA = c, π ≥ 0

whereA is a matrix of orderm×n, π ∈ Rm is the row
vector of primal variables.
As explained in Section 1, typicallyn ≤ m. Its dual is

minimize z(x) = cx (3)

subject to Ax ≥ b

wherex ∈ Rn is the column vector of dual variables.
The method is applied on (3). We denote its fea-

sible region{x : Ax ≥ b} by K, and its interior
{x : Ax > b} by K0. The method needs an initialinte-
rior point x0 ∈ K0. It introduces a spherical drop (we
will refer to it as thedrop or theball) of small radius
with centerx0 lying completely in the interior ofK,
and traces the path of its center as the drop falls under a
gravitational force pulling it in the direction−cT . The
drop cannot cross the boundary ofK, so after an initial
move in the direction−cT it will be blocked by the face
of K that it touches; after which it will start rolling down
along the faces ofK of varying dimensions. Hence the
center of the drop will follow a piecewise linear descent
path completely contained in the interior ofK, but since
the drop’s radius is small, the center remains very close
to the boundary ofK after the first change in direc-
tion in its path. Therefore the method is essentially a
boundary method. However, unlike the simplex method
which follows a path strictly along the one dimensional
boundary ofK, this method is ahigher dimensional
boundary method in which the path followed remains
very close to faces ofK of varying dimensions. See
Figures 2, 3, for 2-, 3-dimensional illustrations.

After a finite number of changes in the direction of
movement, the drop will reach the lowest possible point
in the direction−cT that it can reach withinK and
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Gravitational

Force

x
0

Fig. 3. The ball rolling (dashed path, with dots indicating
where its direction changes) inside a 3-dimensional polyhe-
dron. Only the faces along which it rolls to the optimum are
shown.

then halt. If the radius of the drop is sufficiently small,
the touching constraints (i.e., those whose correspond-
ing facets ofK are touching the ball) in (3) at this final
halting position will determine an actual optimum solu-
tion of the LP (2). If its radius is not small enough, the
direction finding step in the method at the final halting
position with centerx∗ yields a feasible solutioñπ of
(2) and the optimum objective value in (2) lies in the in-
terval [π̃b, cx∗]. Then the radius of the drop is reduced
and the method continues the same way. In [3] finite
termination of the method to find an optimum solution
has been proved.

Morin, Prabhu, and Zhang [9] have shown that this
version of the gravitational method using point-drops
(i.e., drops of radius 0) has exponential growth in the
worst case just as the simplex method does.

How to Make the GravitationalMethod Efficient?:
It is clear that in order to make the gravitational method
efficient, it is necessary to keep the center of the drop
from hugging the boundary ofK all along its path, i.e.,
make the method a truly interior point method. This can
be achieved by making the radius of the drop as large
as possible by moving its center to the center of the set
of feasible solutions. For this we develop a new center-
ing strategy (discussed briefly in Murty[15]) that is very
different from centering strategies used in other IPMs.
Its biggest advantage is that it can be solved approx-
imately by a method that needs no matrix inversions,
and hence is lot simpler than other centering strategies.
We will describe this centering strategy next.

6. The Centering Strategy

We assume that an initial interior feasible solution
x0 ∈ K0 for (3) is available. If such an initial point is not
available, we modify the problem using the usual big-
M augmentation with one artificial variable as follows

minimize cx + Mxn+1

subject to Ax + exn+1 ≥ b, xn+1 ≥ 0

where e = (1, ..., 1)T ∈ Rm and M is a positive
number significantly larger than any other number in
the problem. Letx0

n+1 > max{0, b1, ..., bm}. Then
(0, ..., 0, x0

n+1)
T is a strict interior feasible solution of

the modified problem which is in the same form as (3).
So, we assume that a strict interior feasible solution

x0 of (3) is available. We also assume thatc 6= 0, as
otherwise 0 is already an optimum solution of (2). We
normalizec, so that||c|| = 1. We also assume that
||Ai.|| = 1 for all i.

Without any loss of generality, we assume that each
constraint in (3) determines a facet ofK. This is just for
simplicity, the algorithm discussed is not affected by any
redundant constraints in (3) which do not correspond to
facets ofK. Fori = 1 tom let Hi = {x : Ai.x = bi} be
the i-th facetal hyperplane forK. Let H0 = {x : cx =
cx0} be the objective hyperplane through the current
point x0.

Sincex0 is in the interior ofK, Ai.x
0 > bi for all

i = 1 to m. Then δ0
i = Ai.x

0 − bi is the distance
(Euclidean) ofx0 fromHi. With x0 as center, the largest
sphere we can construct withinK has a radiusmin{δ0

i :
i = 1 to m}. This may be too small. To construct even
larger drops insideK, we need to move the center of
the drop fromx0 to a better interior point. Starting with
x0, the centering strategy tries to find a new position
for the center of the drop insideK0 that maximizes the
radius of the drop that can be constructed withinK. It
does this while keeping the objective value at the new
center the same as that atx0, by includingcx = cx0 as
a constraint that the new centerx has to satisfy.

So the new centerx is chosen fromK0 ∩ H0 and
maximizesmin{Ai.x− bi : i = 1 tom}. The model for
this choice is:

Maximize δ

subject to δ ≤ Ai.x − bi, i = 1 to m (4)

cx = cx0

This is another LP with variables(δ, x). It may have
alternate optimum solutions with differentx-vectors,
but the optimum value ofδ will be unique. If (x̄, δ̄) is
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an optimum solution for it,̄x is taken as the new center
for the drop, and̄δ is the maximum radius for the drop
within K0 subject to the constraint that its center lie on
K0 ∩ H0.

But this itself is another LP, this type of model may
have to be solved several times before we get a solution
for our original LP, so solving this model (4) exactly
will be counterproductive. But (4) has a very special
structure, using it we developed the following procedure
to get an approximate solution for it.

6.1. Procedure for Getting an Approximate Solution
for (4)

In this procedure for finding the new centerx ∈
K0∩H0, we only consider moves in directions perpen-
dicular to the facetal hyperplanes ofK, since our goal
is to increase the minimum distance ofx from a facetal
hyperplane. These directions (with positive or negative
step lengths) are:AT

i. for i = 1 to m. However sincex
has to lie onH0, the actual directions of movement con-
sidered are:P.i = AT

i. − cT cAT
i. = (I − cT c)AT

i. , where
P.i is the orthogonal projection ofAT

i. on{x : cx = 0},
for i = 1 tom. HereI is the unit matrix of ordern. For
an illustration see Figure 4.

So, this procedure consists of a series of moves
beginning with x0, generating a sequence of points
x0, . . . , xr, . . . in K0 ∩ H0. When the current point is
xr we do a line search in one of the directions from
{P.1, . . . , P.m} for the position for the next center that
will help increase the radius of the ball insideK as
much as possible.

Let xr be the current point. In optimization literature,
when considering a line search atxr in the direction
P.i, only moves of positive step lengthα leading to the
pointxr + αP.i are considered. Here our step lengthα
can be either positive or negative, so even though we
mentionP.i as the direction of movement, the actual
direction for the move may be eitherP.i or −P.i. With
xr + αP.i as the center, the maximum radius of a ball
insideK has radius

fir(α) = min{At.(x
r + αP.i) − bt : t = 1, . . . , m}

Since we want the largest ball insideK with its center
in K0∩H0, we will call a directionP.i to be aprofitable
directionto move atxr if fir(α) increases asα changes
from 0 to positive or negative values (i.e., max{fir(α)
over α} is attained at someα 6= 0). Likewise,P.i is
unprofitable directionto move atxr if max{fir(α) over
α} is attained atα = 0).

H
0

x
0

x
*

K

F
1

Fig. 4. Moving the center fromx0 along the directionP.1 to
x∗, leads to a larger ball insideK.

For each directionP.i, the value ofα that maxi-
mizesfir(α) is known as the optimum step length for it.
So, for unprofitable directions atxr, the optimum step
length is 0; for profitable directions it will be nonzero
and may be positive or negative.

Let ᾱ be the optimum step length for directionP.i,
and let θ̄ = fir(ᾱ) be the maximum value offir(α).
Then(θ̄, ᾱ) is an optimum solution of the following 2-
variable LP in which the variables areθ, α.

Maximize θ

subject to

θ − αAt.P.i ≤At.x
r − bt, t = 1, . . . , m (5)

θ ≥ 0, α unrestricted in sign.

The radius of the largest ball insideK with the current
pointxr as center isδr = min{At.x

r−bt : t = 1 to m},
the minimum RHS constant in (5). LetT = {t1, . . . , ts}
be the set of allt that tie for the minimum in the defi-
nition of δr. So, the minimum RHS constant in (5) is
unique only if |T | = s = 1, in this case it is attained
for t = t1 only. The following theorem gives a criterion
to check very efficiently whether a directionP.i is a
profitable or unprofitable direction atxr.

Theorem 2 P.i is an unprofitable direction to move
at the current pointxr iff: s = |T | defined above
is > 1, and the coefficients ofα in (5) in rows t ∈
T = {t1, . . . , ts} have both positive and negative val-
ues among them.

Proof: Let Γ denote the set of feasible solutions of
(5) in the (θ, α)-space. If the conditions stated in the



10 K. G. Murty – Practically efficient IPM for LP

theorem are satisfied,(δr, 0) is an extreme point ofΓ,
and it can be verified that as we move away from this
extreme point along either of the two edges ofΓ inci-
dent at this extreme point,θ decreases. So, when these
conditions are satisfied,(δr, 0) is the optimum solution
of (5), hence the result in the theorem holds.

Suppose the conditions stated in the theorem are not
satisfied, i.e., eithers = 1, or s > 1, but all the coef-
ficients ofα in (5) in rowst ∈ T have the same sign.
Then it can be verified that as you move away from
(δr, 0) along one of the edges ofΓ on which it lies,θ
increases. Hence in this case the maximum value ofθ
in (5) is strictly > δr = fir(0), so P.i is a profitable
direction to move atxr.

If P.i is a profitable direction to move atxr, the
optimum step length for the move can be found by
the following procedure. Transform (5) into standard
form. Let u1, . . . , um denote the slack variables corre-
sponding to the constraints in (5) in this order. Then
(u1, . . . , ut1−1, θ, ut1+1, . . . , um) is a feasible basic
vector for this standard form. The BFS corresponding
to this basic vector for the standard form corresponds
to the extreme point(δr, 0) of Γ in the (θ, α)-space.
Starting from this feasible basic vector, the optimum
solution of (5) can be found efficiently by the primal
simplex algorithm with at mostO(m) effort. It may
be possible to develop even more efficient ways for
finding the optimum value ofα in (5), that value is the
optimum step length for the move atxr in the profitable
directionP.i.

When the current point isxr, the centering procedure
can end in the following way:

(i): If the condition in Theorem 2 determines that
there is no profitable direction to move atxr in
{P.1, . . . , P.m}, then we terminate the centering pro-
cedure and takexr as the center of the next ball and
δr as its radius.

(ii): If profitable directions to move atxr exist in
{P.1, . . . , P.m}, we select one of them to move, say
P.i, and find the optimum step length by solving (5).
Let it be ᾱ. If ᾱ = ∞, then the objective value in
LP (3) is unbounded below, and LP (2) is infeasible,
terminate the whole process.

If ᾱ is finite,xr+1 = xr + ᾱP.i is the next point in
the sequence. Letδr+1 = min{Ai.x

r+1 − bi : i = 1
to m}. If δr+1−δr is larger than some selected toler-
ance, takexr+1 as the current point in the sequence
and repeat the centering procedure with it. Ifδr+1−δr

is smaller than the selected tolerance, then terminate

the centering procedure and takexr+1 as the center
for the next ball andδr+1 as its radius.

When there are several profitable directions to move at
the current pointxr in the set{P.1, . . . , P.m} in this
procedure, efficient selection criteria to choose the best
among them can be developed. In fact the best may
be among theP.i that correspond toi that tie for the
minimum in δr = min{Ai.x

r − bi : i = 1 to m},
or a weighted average of these directions (even though
this direction is not included in our list of directions to
pursue).

As can be seen, the procedure used in this centering
strategy does not need any matrix inversion, and only
solves a series of 2-variable LPs which can be solved
very efficiently. Hence this centering strategy can be
expected to be efficient.

We define thepath of centersto be the path of the
center of the drop in its descent to the optimal face of
(3) in this algorithm.

Numerical example:We consider the following LP
in 2 variablesx1, x2 to illustrate the centering strategy,
both numerically and with a figure.

Minimize z = −15x1 − 10x2

subject to 1500 − 2x1 − x2 ≥ 0

1200− x1 − x2 ≥ 0

500 − x1 ≥ 0

x1 ≥ 0

x2 ≥ 0

Normalizing the coefficient vectors of all the con-
straints and the objective function to Euclidean norm 1,
here it is again:

Minimize z = −0.832x1 − 0.555x2

Subject to 670.820− 0.894x1 − 0.447x2 ≥ 0

848.530− 0.707x1 − 0.707x2 ≥ 0 (6)

500− x1 ≥ 0

x1 ≥ 0

x2 ≥ 0

Let K denote the set of feasible solutions, and let
x0 = (10, 1)T be the initial interior feasible solu-
tion. When we plug inx0 in the constraints in (6),
the left hand side expressions have values 661.433,
840.753, 490, 10, 1 respectively. So, the radius of
the largest ball insideK with x0 as center isδ0 =
min{661.433, 840.753, 490, 10, 1} = 1.

The objective plane throughx0 is the straight line in
R2 defined by−0.832x1 − 0.555x2 = −8.875. This is
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the straight line joining(10.667, 0)T and(0, 15.991)T

in the x1, x2-plane. So, the only direction on it is
P.1 = (10.667,−15.991)T . Moving from x0 in the
direction ofP.1 a step lengthα leads to the new point
(10 + 10.667α, 1 − 15.991α)T . Finding the optimum
step lengthα leads to the following 2-variable LP in
variablesθ, α:

θ α
1 2.388 ≤ 661.433
1 −3.765 ≤ 840.753
1 10.667 ≤ 490
1 −10.667 ≤ 10
1 15.991 ≤ 1
1 0 Maximize

θ ≥ 0, α unrestricted

Since the minimum RHS constant in this problem
occurs in only one row, from Theorem 2 we know
that the optimum value ofα in this problem will be
nonzero. Actually the optimum solution of this problem
is (θ̄, ᾱ)T = (6.4,−0.338)T . See Figure 6. The new po-
sition for the center isx1 = x0−0.338P.1 = (10, 1)T −
0.338(10.667,−15.991)T = (6.4, 6.4)T , and the max-
imum radius ball with it as center has radius 6.4. Since
P.1 is the only direction inK ∩ {x : cx = cx0} in this
case, this ball is the maximum radius ball insideK with
center on the objective plane throughx0.

If we try to get a larger ball by moving fromx1 in the
directionP.1 a step length ofα, it can be verified that in
the 2-variable LP to find the optimum step lengthα, the
entries in the RHS vector are: 662.238, 839.48, 493.6,
6.4, 6.4; and the coefficient vector ofα remains the same
as in the above table. In this problem the minimum RHS
constant occurs in both rows 4 and 5; and the coefficients
of α in these two rows have opposite signs, indicating
by Theorem 2 that the optimum value for step lengthα
will be 0. This illustrates Theorem 2, and indicates that
x1 is the best position for the center of the ball on the
objective plane throughx0 in this problem.

7. Stage 1, Repetitions of Iteration 1 in the Gravita-
tional Interior Point Method to Solve (3), (2)

By fixing the initial drop as the largest possible ball
with its center inK0∩H0, the centering strategy pushes
the center of the ball close to the center ofK0 ∩ H0.
Stage 1 of the overall method consists of repetitions of
a special iteration that exploits this property to get as
much reduction in the objective value of (3) as possi-

ble using cheap computations consisting of the follow-
ing two steps repeatedly. These steps in this iteration
are described below, some changes in the second step
to accelerate convergence will be discussed later. This
iteration begins withx0 as the initial interior feasible
solution.

Iteration 1

Select a small positive numberǫ as the tolerance for
minimum{Ai.x − bi : i = 1 to m} for the centerx to
be in the interior ofK.

Step 1.1: Centering:Let H0 = {x : cx = cx0}.
Starting withx0 apply the centering strategy of Section
6 to get the largest ballB(x∗, δ) with x∗ ∈ K0 ∩ H0

as center andδ as radius. Go to Step 1.2.

Step 1.2: Descent Move Following Centering:This
move does not use the ballB(x∗, δ) constructed in Step
1.1 at all; it only uses its centerx∗ and its property of
being close to the center ofK0∩H0. It takes a maximum
possible step fromx∗ in a descent direction forcx.

If this is the first time this step is being carried out,
the only descent direction that we have readily available
at this time is−cT , and we use that as the direction to
move fromx∗.

If this is not the first time this step is being carried
out, besides−cT we have another descent direction for
cx namely the direction of the path of centers at the
current pointx∗, which can be approximated byx∗− x̃
where x̃ is the center of the drop when Step 1.2 was
last carried out. See Figure 5.

If d ∈ {−cT , x∗ − x̃} is the direction selected for
moving from x∗, we will move in this direction the
maximum distance possible while still remaining inside
K0. This gives

x̄ = x∗ + γd

γ = min{
−Ai.x

∗ + bi + ǫ

Ai.d
: i such thatAi.d < 0}

If γ = ∞, the objective function is unbounded below
in (3), and (2) is infeasible, terminate the algorithm.

If γ is finite, the decrease in the objective value
in this move is |γcd|. Select the directiond from
{−cT , x∗− x̃} to be the one which yields the maximum
decrease in the objective value in this move. Makex̄
obtained after the move the newx0, and go back to
Step 1.1 for another repeat of this Iteration 1.
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Fig. 5. The two descent directions to move in Step 1.2 when
the center is atx∗ in an iteration. One isx∗−x̃ wherex̃ is the
center in the previous iteration, another is−cT (here shown
as pointing down south). The dashed lines are the objective
planes in the two iterations.

7.1. Zigzagging

Repetitions of this Iteration 1 may encounterzigzag-
ging (a phenomenon commonly discussed in nonlinear
programming) if the direction to move fromx∗ is al-
ways taken to be−cT . Zigzagging occurs when the cen-
ter of the ball gets trapped in a narrow cone-like region,
with successive balls having the same “touching set” of
constraints repeatedly. If this occurs (likely when the
center nears the optimal face, if the optimal face is of
low dimension) each successive repetition of Iteration
1 makes progressively decreasing improvements. Tak-
ing the direction to move in each repetition of Iteration
1 to be the better of{−cT , x∗ − x̃} helps to prevent
zigzagging from occurring.

7.2. Other Descent Directions

Suppose at this time in Stage 1, Step 1.2 has been
carried outr times. Letxk denote the center of the drop
when Step 1.2 is carried out thekth time for k = 1 to
r. Thenxq − xp is a descent direction for the objective
function in (3) for all1 ≤ p < q ≤ r. Among all these
descent directions, the ones obtained using recent pairs
of centers may have useful information about the shape
of the feasible region between the objective value at
present and at its optimum. So, using a weighted average
of these descent directions as the direction to move next
(instead of using either−cT or xr − xr−1 as discussed
above) may help in maximizing the improvement in
the objective value in this move. The best weighted
average to use for maximum practical effectiveness can
be determined using computational experiments.

We continue repeating applications of Iteration 1 un-

til the improvement in the objective value in each appli-
cation becomes small. Let̄x denote the interior feasible
solution in this final repetition of Iteration 1 in Stage 1.

If the centering strategy performs well, this final so-
lution x̄ in Stage 1 can be expected to be such thatcx̄ is
quite close to the minimum objective value in (3) (i.e.,
x̄ can be expected to be a near optimum to (3)). Several
efficient strategies developed in LP theory are available
to get an approximate optimum to (2), (3) from̄x.

Stage 1 has the aim of getting as close to the optimum
as possible without necessitating matrix inversions. The
final point obtained in Stage 1 may itself be a reason-
able approximation to the optimum in some practical
applications.

Numerical example:We will illustrate one iteration
of Stage 1 on the 2-variable LP (6) with decision vari-
ablesx1, x2 given in Section 6. There we started with
the initial feasible solutionx0 = (10, 1)T for the prob-
lem, applied the centering strategy which moved the
center tox1 = (6.4, 6.4)T . In this initial iteration of
Stage 1 on this problem, the only descent direction we
have available atx1 is −cT = (0.832, 0.555)T . Mov-
ing from x1 a step lengthγ in the direction−cT leads
to the point(6.4 + 0.832γ, 6.4+ 0.555γ)T . Taking the
toleranceǫ = 1, we see that the maximum step length is
γ = min{666.571, 854.72, 592.067} = 592.067. Fixing
γ = 592.067, we get the new interior feasible solution
x̄ = (499, 335)T .

With x̄, we need to go to the next iteration in Stage 1
and continue in the same way. Figure 6 illustrates both
the centering step carried out in Section 6 beginning
with the initial interior feasible solutionx0, and the
descent move carried out here.

If a true optimum solution of (2), (3) is needed, start-
ing from the final point̄x obtained at the end of Stage
1 as the current point we go to Stage 2 which carries
out applications of the general iteration, Iteration 2, that
consists of the following steps besides the centering
step:

• Gravitational direction finding step.
• Step length determination and the main move.
• Additional move of the center.
• What to do if the ball halts.

There are several possible options for selecting the
gravitational direction along which the ball will move,
we will first discuss these in detail next.
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Fig. 6. Figure (not drawn to scale) shows feasible regionK

with 5 facets, each has an arrow pointing its feasible side.
Only a small sphere of radius 1 can be drawn insideK with
initial point x0 as center. Dashed line throughx0 is the objec-
tive plane, centering strategy moves point tox1 = (6.4, 6.4)T

on this plane. Withx1 as center, a sphere of radius 6.4 can
be inscribed insideK. The descent move fromx1 in Step
1.2 in direction−cT (dotted line) leads tōx = (499, 335)T

with objective value -10835. The dashed line throughx̄ is the
objective plane{x : −15x1 − 10x2 = −10835}. Another
iteration of Stage 1 begins with̄x.

8. The Gravitational Direction Finding Step

In the versions of the gravitational methods discussed
in [3, 11], the initial ball is always selected to have a very
small radius so that it is completely insideK0 without
any of the boundary faces ofK touching it, so the initial
move in the method always takes place in the direction
−cT and could be of very short length depending on
the location of the center of the initial ball. But here,
the centering step in Section 6 used for selecting the
initial ball makes sure that it is already touching some
facets ofK; these are called thetouching facets, and
the constraints that define them are called thetouching
constraints. Let:

B(x∗, δ) = the current ball insideK with centerx∗

and radiusδ

J(x∗, δ) = {i : Ai.x
∗ = bi + δ}, the index set of

touching constraints forB(x∗, δ)

Q = the matrix consisting of rowsAi. for

i ∈ J(x∗, δ)

G(x∗, δ) = {y : cy < 0, Ai.y ≥ 0

for all i ∈ J(x∗, δ)}, the set of

descent feasible directions forB(x∗, δ).

The gravitational direction atx∗ is a direction se-
lected fromG(x∗, δ) along which the entire current ball
B(x∗, δ) will be moved. Various options for selecting
this direction are given below.

8.1. The Steepest Descent Gravitational Direction
(SDGD)

Defined in [3] and used in the SDGM (Steepest De-
scent Gravitational Method) discussed there, this is the
steepest descent direction among all those inG(x∗, δ).
So, the SDGD is the optimum solution of

Minimize cy

subject to Qy ≥ 0 (7)

1 − yT y ≥ 0

In [3] it has been proved that this problem is equiv-
alent to the problem

Minimize (c − ηQ)(c − ηQ)T

subject to η ≥ 0 (8)

which is a nearest point problem (finding nearest point
to c in Rpos(Q) = the nonnegative hull of row vectors
in the matrixQ defined above).

If η̄ is an optimum solution of (8), then̄y = 0 if ξ̄ =
(c − η̄Q) = 0, or −ξ̄T /||ξ̄|| otherwise, is an optimum
solution of (7).

Also, if ξ̄ = 0, G(x∗, δ) = ∅, i.e., the ballB(x∗, δ)
cannot move from its present position in gravitational
descent, hence it halts in its present position. If this
happens, let̄π = (π̄i) whereπ̄i = η̄i if i ∈ J(x∗, δ), 0
otherwise. Then̄π is feasible to (2), and the optimum
objective value in (2) lies in the interval[π̄b, cx∗]. In
this case the method goes to the step to carry out when
the ball halts, discussed in Section 9.

If ξ̄ 6= 0, go to the main move step with̄y as the
gravitational direction for the move. Now the method
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goes to the main move discussed in Step 2.3 of Section
9.

8.2. Modified Gravitational Directions MGD1,
MGD2

Computing the SDGD becomes simplified if the cone
Rpos(Q) is simplicial, i.e., if Q is of full row rank,
which may not be the case always. So, in [3], simplified
versions of gravitational directions MGD1, MGD2 are
discussed. In these versions, the nearest point problem
(8) for finding the gravitational direction is modified by
replacing the matrixQ by a submatrixD of it consisting
of a maximal linearly independent subset of row vectors
of Q. So, computing MGD1 requires the solution of the
nearest point problem

Minimize (c − ηD)(c − ηD)T

subject to η ≥ 0 (9)

which is the problem of finding the nearest point in
Rpos(D) to c.

So, MGD1 is the direction obtained as in the SDGD,
with η̄ being the optimum solution of (9) instead of (8).
(9) can be solved very efficiently by geometric methods
discussed in [12, 13, 17, 18, 19] using the concept of
projection faces of the simplicial cone Rpos(D).

MGD2 simplifies the effort needed to find the gravi-
tational direction even further by taking the vectorη̄ to
be not the optimum solution of (9), but the one corre-
sponding to a projection face of Rpos(D) that is closer
than the initial one.

8.3. The Gradient Projection Direction (GPD)

Definey0 = −cT , andT = J(x∗, δ). Computing this
direction defined in [11] involves the following steps:

Define J(y0) = {i : i ∈ T, Ai.y
0 < 0}. Each of

the constraintsAi.x ≥ bi for i ∈ J(y0) is currently
blocking the movement of the ball in the directiony0,
soJ(y0) is called theindex set of blocking constraints.

If J(y0) = ∅, take the GPD to bey0.
If J(y0) 6= ∅, . LetE be a submatrix ofA consisting

of rowsAi. which form a maximal linearly independent
subset of{Ai. : i ∈ J(y0)}, and letP ⊂ J(y0) be{i :
Ai. is a row ofE}. Let ξ be the orthogonal projection
of y0 in the subspace{x : Ex = 0}, so ξ = ((I −
ET (EET )−1E)y0.

If ξ 6= 0, the GPD isξ.
If ξ = 0, let µ = −(EET )−1Ey0 = (µi : i ∈ P ).

ThenµT E = c. So if µ ≥ 0, thenπ̄ = (π̄i) defined by

π̄i = 0 if i 6∈ P , = µi if i ∈ P , is a BFS of (2). In this
case the ballB(x∗, δ) halts in its present position and
cannot move any further under the gravitational force.
In this case the method goes to the step to carry out
when the drop halts (Step 2.5), discussed in Section 9.

If ξ = 0 andµ 6≥ 0, then delete thei corresponding
to the most negativeµi from the setT , and repeat all
this work with the newT .

9. The Gravitational Interior Point Method for LP

Here we state the whole method.

Stage 1:This stage consists of repeated applications
of Iteration 1.

Iteration 1: Initial Iteration: Starting with the ini-
tial interior feasible solutionx0, apply Iteration 1 (Steps
1.1, 1.2) described in Section 7 repeatedly until the im-
provement in the objective valuecx in each application
becomes small.

Let x̄ denote the interior feasible solution obtained at
the end of Stage 1. With̄x go to Stage 2.

Stage 2:This stage consists of repeated applications
of Iteration 2 starting with the point obtained at the end
of Stage 1.

Iteration 2: General Iteration: The first application
of this iteration begins with̄x, the interior feasible so-
lution obtained at the end of Stage 1.

Step 2.1: Centering: Let H̄ = {x : cx = cx̄}.
Starting withx̄, apply the centering strategy discussed
in Section 6 to get the largest ballB(x∗, δ) with x∗ ∈
K0 ∩ H̄ as center andδ as radius. Go to Step 2.2.

Step 2.2: Gravitational Direction Finding: Find the
gravitational direction atx∗ along which the current
ball will be moved, using one of the options described
in Section 8 (the options discussed there are: SDGD,
MGD 1, MGD 2, and GPD). If the ball halts, go to
Step 2.5. Otherwise denote the gravitational direction
selected bȳy, go to Step 2.3 with it.

Step 2.3: Step Length Determination and the Main
Move: Let ȳ denote the gravitational direction selected
for the move of the ballB(x∗, δ). The step length is the
maximum distance the ball can move in this direction
while still remaining completely withinK. So, this step
length in the direction̄y is:
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θ = min{
Ai.x

∗ − bi − δ

−Ai.ȳ
: i ∈ J(ȳ)}

where J(ȳ) = {i : Ai.ȳ < 0}, the blocking set of
constraints corresponding to the directionȳ.

If θ = ∞, the objective function is unbounded below
in (3), and (2) is infeasible, terminate the algorithm.

If θ is finite, move the present ballB(x∗, δ) toB(x∗+
θȳ, δ) and go to Step 2.4.

Step 2.4: The Additional Move: Suppose the main
move in this iteration has moved the ball to the new
positionB(x∗+θȳ, δ). The center of this ballx∗+θȳ, is
strictly in the interior ofK. Now get rid of this ball, and
take a maximum possible step from its centerx∗ + θȳ
in the direction−cT while still remaining insideK0.
The maximum step length in this move is:

γ =min{
Ai.(x

∗ + θȳ) − bi − ǫ

Ai.cT
: i such

that Ai.c
T > 0}

So, now we move fromx∗ + θȳ to the pointx̄ =
x∗ + θȳ − γcT .

With this x̄ as the new interior point solution, go back
to Step 2.1 to repeat this Iteration 2.

Step 2.5: When the Ball Halts: Since the ball
B(x∗, δ) has halted, it cannot move from its present
position under the gravitational force, because its
movement is blocked by the blocking constraints
among the touching constraints. In this case we obtain
a feasible solution̄π for (2) as described in Section
8. Let F = {i : π̄i > 0}, and E ⊂ F such that
{Ai. : i ∈ E} is a maximal linearly independent sub-
set of {Ai. : i ∈ F}, and d = (bi : i ∈ E). Let
x̂ = x̄ + ET (EET )−1(d − Ex̄), the orthogonal pro-
jection of x̄ on the flat{x : Ai.x = bi, i ∈ E}. If x̂ is
feasible to (3), then it is optimal to (3), and̄π is optimal
to (2), terminate the algorithm.

Supposêx is not feasible to (3). Here the centerx∗ of
B(x∗, δ) is at the center ofK on the present objective
plane. Make the additional move atx∗ as in Step 2.4,
and continue.

10. Convergence Proofs

In this section we give convergence proofs for the
algorithm consisting of Stages 1, 2; and the algorithm
consisting of Stage 1 alone under the assumption that
the centering strategy is carried to optimality.

Theorem 3 Consider the following variant of problem
(4) with the value ofcx as a parametert.

δ(t) = maximum value ofδ

subject to

δ − Ai.x ≤ −bi, i = 1 to m (10)

cx = t

Here δ(t), the optimum objective value in this prob-
lem as a function of the parametert, is a piecewise lin-
ear concave function oft in the interval oft for which
the problem has feasible solutions.
Proof: δ(t) is the optimum objective value in a para-
metric right hand side linear program in which the ob-
jective function is to be maximized. It is well known
thatδ(t) is a piecewise linear concave function [10].

δ(t) is the maximum radius of a sphere that can be
inscribed inK with center in{x : cx = t}. Let

t̄ = max{cx : x ∈ K}

t = min{cx : x ∈ K}

t∗ = the value oft whereδ(t)

attains its maximum value.

From Theorem 3 we know thatδ(t) satisfies the fol-
lowing properties.

(i): δ(t) is monotonic increasing ast increases from
t to t∗, and fromt∗ it is monotonic decreasing ast
increases on tōt.

(ii): If the centering strategy is carried to accuracy,
the radii of the spheres encountered in Steps 1.2, 2.2
in the algorithms of Sections 7, 9 may increase and
peak in the beginning, after crossing the peak they
will be monotonic decreasing.

Theorem 4 Starting from an interior feasible solution
for (3), if the centering strategy is carried to accuracy,
the algorithm of Section 9 consisting of Stages 1, 2
converges to optimum solutions of the LPs (2), (3) if they
exist, or conclude that the objective value is unbounded
in (3). Also, the Stage 1 algorithm of Section 7 alone
converges to an optimum solution of (3) if it exists, or
conclude that the objective value is unbounded below
in it.

Proof: From (ii) above we know that the radii of
the balls encountered increase in the beginning until
reaching a peak. Therefore, during this phase, moving



16 K. G. Murty – Practically efficient IPM for LP

in descent directions leads to increasing reductions in
the objective value.

Once the radii of the balls begins to decrease, they
are monotonically decreasing. Using this, the theorem
follows from the convergence proof of the gravitational
method discussed in [3].

These results show the convergence of both the algo-
rithms. But we will now show that the Stage 1 algorithm
by itself has much stronger convergence properties.

Definitions: The set of touching constraints att is
the set of all constraints in (10) satisfied as equations
by any of the optimum solutions of (10).

Theessential touching constraint index set att is the
setJ(t) = {i : Ai.x = bi + δ(t)} for every optimum
solution(δ, x) of (10)}. Thei-th constraint in (3), (10)
is said to be in the set of essential touching constraints
at t if i ∈ J(t).

For the rest of this section we will assume that the
center selected in the centering strategy is anx(t) satis-
fying the property that the facets ofK touching the ball
B(x(t), δ(t)) (the ball withx(t) as center andδ(t) as
radius) are those corresponding to the essential touch-
ing constraint set att. Then for anyt, δ(t) = Euclidean
distance ofx(t) to any of the constraints of (3) corre-
sponding to the index setJ(t). There may be different
points satisfying this assumption, but all of them lead
to the same value forδ(t) and hence a ball of the same
size insideK.
Theorem 5 If J(t) remains the same for allt1 ≤ t ≤
t2, thenδ(t) is linear in this interval.

Proof: For t = t1 + α(t2 − t1), 0 ≤ α ≤ 1, the
point x(t1) + α(x(t2) − x(t1)) along the line segment
joining x(t1) andx(t2) satisfies the assumption made
for the centerx(t). By the hypothesisJ(t) = J(t2) for
all t in this interval. So for anyt in this interval,δ(t) is
the Euclidean distance from this point to thei-th facetal
hyperplane ofK for anyi ∈ J(t2), and hence is linear;
i.e., δ(t1 + α(t2 − t1)) = δ(t1) + α(δ(t2) − δ(t1)) for
all 0 ≤ α ≤ 1.

Theorem 5 shows that ift3 is a point where the slope
of δ(t) changes, then ast is decreases throught3 the set
J(t) changes, some constraints in it leave, and others
outside it enter into it.
Theorem 6 For t in the intervalt∗ to t, x(t), an opti-
mum solution of (10), is also an optimum solution of

minimize cx

subject to Ax ≥ b + eδ(t)

wheree is the column vector of all 1s of appropriate

dimension. And fort in the intervalt̄ to t∗, x(t), is also
an optimum solution of

maximize cx

subject to Ax≥ b + eδ(t)

Proof: For anyt, (x(t), δ(t)) is an optimum solution
for (10). So, there must exist an optimum dual solution
π(t) = (π1(t), . . . , πm(t)), µ(t), optimal to (11), the
dual of (10).

Minimize − πb + µt

subject to
m∑

i=1

πi = 1 (11)

−πA + µc = 0

µ unrestricted, π ≥ 0

such that((x(t), δ(t)), π(t), µ(t)) satisfy the CS (com-
plementary slackness) conditions (12)

πi(Ai.x − bi,−δ) = 0, i = 1, . . . , m (12)

We have already seen above that for t≤ t ≤ t∗, δ(t)
is increasing witht, so the dual variableµ(t) will be
strictly positive in this interval. And fort∗ ≤ t ≤ t̄,
δ(t) is decreasing ast increases, soµ(t) will be strictly
negative. So, we can definey(t) = (yi(t) = πi(t)/µ(t)),
then it satisfies the following properties:

(a): For t betweent∗ and t, from (11) and (12) we
see that(x(t), y(t)) are an optimum primal, dual pair
for the LP

Minimize cx

subject to Ax≥ b + eδ(t).

(b): For t between̄t andt∗ , from (11) and (12) we
see that(x(t), y(t)) are an optimum primal, dual pair
for the LP

Maximize cx

subject to Ax≥ b + eδ(t).

Theorem 7 Consider the parametert lying in the in-
terval [t, t∗], decreasing fromt∗ to t. Suppose a con-
straint, say the 1st, enters the set of essential touching
constraint set ast keeps decreasing throught1 for some
t1 in this interval; i.e., 1∈ J(t1) and 1 6∈ J(t) for val-
ues oft slightly greater thant1. Then1 6∈ J(t) for any
value oft > t1 in this interval.
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Proof: Here t1 is betweent∗ and t. For any t if
(x(t), δ(t)) is the optimum solution of (10) and1 ∈
J(t), then they satisfy

δ(t) − A1.x(t) =−b1

δ(t) − Ai.x(t) ≤−bi i = 2 to m

So, a necessary condition for 1 belonging toJ(t) is
that the system

cx = t

δ − A1.x =−b1

δ − Ai.x≤−bi i = 2 to m

must have a feasible solution. From Theorem 3 we know
that bothcx (= t) andδ(t) are monotonic decreasing as
t decreases fromt∗ to t. So, the largest value oft for
whichJ(t) contains 1 is≤ the optimalt in the LP (13).

Maximize αδ + cx

subject to δ − A1.x =−b1 (13)

δ − Ai.x≤−bi, i = 2 to m

for any positive coefficientα. The dual of (13) is

Minimize− πb

subject to
∑

πi = α

−πA = c

π1 unrestricted,π2 to πm ≥ 0

As t is decreasing throught1, 1 is entering the set
J(t), so (13) is infeasible for values oft slightly greater
than t1. At t1 from the proof of Theorem 6 we have
y(t1) = (yi(t1)) satisfying

y(t1)A = c
∑

yi(t1) = (1/µ(t1)) > 0 (14)

yi(t1)(Ai.x(t1) − bi − δ(t1)) = 0 i = 2 . . .m

y(t1)≥ 0

It can be verified that if we takeα = (1/µ(t1)),
then(x(t1), δ(t1)), π = y(t1) satisfy the conditions for
being optimal to (13) and its dual. This shows thatt1
is the largest value ofcx = t for which 1 can appear in
the setJ(t) as t decreases in this interval, i.e., ast is
decreasing fromt∗ to t, t1 is its first value at which the
1st constraint can appear in the set of essential touching
constraints.
Theorem 8 Consider the parametert lying in the inter-
val [t∗, t̄ ], decreasing from̄t to t∗. Suppose a constraint,
say the 2nd, drops out of the set of essential touching
constraints ast keeps decreasing throught2 for some
t2 in this interval, i.e.,2 ∈ J(t2) and 2 6∈ J(t2) for

values oft slightly less thant2. Then2 6∈ J(t) for any
t < t2 in this interval.

Proof: As in the proof of Theorem 7 it can be argued
that the smallest value oft for which J(t) can contain
2 is≥ optimal t in the LP (15).

Minimize βδ + cx

subject to δ − A2.x =−b2 (15)

δ − Ai.x ≤−bi, i = 1, 3, . . . , m

whereβ is an arbitrary negative coefficient. The dual of
(15) is

Maximize − πb

subject to
∑

πi = β

−πA = c

π2 unrestricted,πi ≤ 0, i 6= 2.

From the proof of Theorem 6 we know that there is
a y(t2) satisfying

y(t2)A = c
∑

yi(t2) = (1/µ(t2)) < 0

y(t2)≤ 0

yi(t2)(Ai.x(t2) − bi − δ(t2)) = 0, i = 1, . . . , m

It can be verified that if we takeβ = 1/µ(t2), then
(x(t2), δ(t2)), π = y(t2)) satisfies the conditions for
being optimal to (15) and its dual, because for values
of t slightly less thant2, (15) is infeasible. This shows
that t2 is the smallest value oft for which 2 appears in
the setJ(t) as t decreases in this interval; i.e., aftert
decreases belowt2 the 2nd constraint will not appear
again in the set of essential touching constraints while
t is in this interval.
Theorem 9 As t, the value ofcx, decreases to t, the
set of essential touching constraints can change at most
2m times.

Proof: The argument in Theorem 8 shows that each
constraint can leave the set of essential touching con-
straints at most once in the intervalt̄ to t∗. Each time
the essential set of touching constraints changes, a con-
straint outside it must enter it. Thus betweent̄ to t∗ the
essential set of touching constraints can change at most
m times.

The argument in Theorem 7 shows that betweent∗

to t, a constraint can enter the set of essential touching
constraints at most once. But each time the set of essen-
tial touching constraints changes at least one constraint
drops out of it. So, betweent∗ and talso, there can be
at mostm changes in the essential touching constraint
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set. So, ast is decreasing to t, there can be at most2m
changes in the set of essential touching constraints.

Theorem 10 Suppose fort1 ≥ t ≥ t2 the index set
of essential touching constraintsJ(t) does not change.
Then the Stage 1 algorithm will descend from objective
valuet1 to t2 in no more than three repetitions of Step
1.2.

Proof: Starting from a point with objective valuet1,
after two applications of Step 1.2 the direction of the
path of centers will be a direction along which the ob-
jective value can decrease all the way tot2 in the next
application (this will definitely be the case if the set
of essential touching constraints identifies the center
uniquely).

Theorems 9, 10 together show that the Stage 1 algo-
rithm will be a strongly polynomial algorithm in terms
of the number of centering steps, if centering is carried
out exactly. The centering problem is a maxmin problem
(an LP with a very special structure). Using its special
structure we developed (Section 6) an iterative method
for it based on line searches, each line search step in-
volves solving a two variable LP. Its complexity has not
been established, it is being investigated. So, with the
present centering procedure, the most interesting ques-
tion in LP complexity theory (whether general LP can
be solved in strongly polynomial time) remains open.

If the centering strategy is carried to good accuracy,
these results indicate that Stage 1 will have superior
computational performance. We are planning to carry
out a computational experiment comparing it with other
methods on test problems available in the literature.

11. Intelligent Modeling

If an LP model is appropriate in an application, prac-
titioners may be able to use the many flexible options
usually available in applications to model the problem
in the form (3) directly with a feasible set of full di-
mension. In this case it is possible to solve it using just
Stage 1 described in Section 7.

Even if there are some equality constraints, by using
each equation to eliminate a variable from the problem,
it may be possible to transform it easily into form (3),
and then use the approach in Section 7 to solve it.

If the centering strategy performs well, the method
discussed in Section 7 combined with intelligent model-
ing offers many potential benefits for practical problem
solving.

12. Application to Solve a Large Scale Nonsingular
System of Linear Equations

Research in many branches of science often leads to
large square nonsingular systems of linear equations

Ax = b (16)

which need to be solved. Whenm, the order ofA is
very large, applying Gaussian elimination to solve (16)
becomes very difficult. For such large systems, simpler
iterative methods like Gauss-Seidel method, SOR meth-
ods, etc. are normally used to get approximate solutions.
Here we show that Stage 1 of the method discussed in
Section 7 can be used as an alternate method to get an
approximate solution of (16).

Let x∗ denote the unknown solution of (16). Now
consider the LP

Minimize z =

m∑

i=1

Ai.x

subject to Ax≥ b (17)

x∗ is the unique optimum solution of (17), its set of
feasible solutions is the translate of a simplical cone to
x∗. Stage 1 of Section 7 can be applied on (17) to get
x∗. If the centering strategy of Section 6 works well,
this can be expected to be a practically viable approach
to solve (16) fast.

13. Some Advantages, and a Geometric Interpreta-
tion

Redundant constraints in (3) can effect the efficiency
for solving it by the simplex method, or the earlier cen-
tral path-following interior point methods. In fact in [5]
Deza, Nematollahi, Peyghami, Terlaky show that when
redundant constraints are added to the Klee-Minty prob-
lem over then-dimensional cube, the central path in
these methods takes2n − 2 turns as it passes through
the neighborhood of all the vertices of the cube before
converging to the optimum solution.

Since gravitational methods operate only with the
touching constraints, their performance is not affected
by redundant constraints. Also, redundant constraints in
(3) do not correspond to facets ofK. So, in Stage 1 of
Section 7, having redundant constraints in (3) just adds
some additional directionsP.i in the set of directions
used in the centering procedure (Section 6). Program-
ming tricks can be developed for efficiently selecting
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promising directions in this set to search for improv-
ing the value offir(α) in this procedure, and keep this
centering procedure and Stage 1 efficient.

Also, since Stage 1 needs no matrix inversion, it can
be used even whenA is dense.

We will now show that Stage 1 (Section 7) can be
viewed as computationally duplicating the geometric
algorithm for solving 2-variable LPs discussed in un-
dergraduate OR texts. In that method, the graph of the
feasible regionK is drawn on paper, a pointx0 ∈ K is
selected visually, and the straight linez(x) = cx = cx0

(objective plane throughx0) is drawn. Looking at the
picture of the feasible region, the objective line is moved
parallel to itself in the desirable direction as far as pos-
sible until any further move will make the line loose
contact with the feasible regionK. The intersection of
K with the final position of the line is the set of opti-
mum solutions of the LP.

Due to lack of visibility in higher dimensional spaces
to check if the objective plane can be moved further in
the desirable direction while still keeping its contact
with the feasible region, this simple geometric method
could not be generalized to dimensions≥ 3. In Iteration
1 (Section 7), the centering step in Step 1.1 guarantees
that in Step 1.2, the objective plane through the center
x∗ of the current ballB(x∗, δ) can move a distance of
δ in the descent direction and still keep its contact with
the feasible region. Thus Stage 1 of Section 7 can be
viewed as a generalization of the objective plane mov-
ing step in the geometric method for two dimensional
LPs.
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