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abstract

Local regression is a popular form of non-parametric regression, combining excel-
lent theoretical properties with conceptual simplicity and flexibility to find structure 
in many datasets. Local regression smoothers fit low-order polynomials locally in 
the points surrounding a target point. The estimate, at each target point, is a 
weighted mean taken from the polynomial with observations close to the target 
point receiving the largest weights. Unfortunately this simplicity has flaws. At the 
boundary, the weight function is asymmetric and the estimate may have substantial 
bias. Bias can be a problem if the regression function has relatively high curvature 
in the boundary. It leads to a disturbing nuisance affecting applications as well as 
global measures of performance of the estimators like mean squared error or 
deviations between the true curve and estimated curve.

In this article, we consider the alleviation of this boundary problem for the context 
of univariate graduation of mortality by local likelihood models. We consider 
three specific treatments to reduce the impact of these boundary effects including 
symmetric and asymmetric weight systems. We analyze local statistical properties 
of smoothers subject to an a priori fixed bandwidth restriction. The weighting 
systems of these estimators depend on smoothing parameters that traditionally are 
estimated by means of data dependent optimization criteria. However by imposing 
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to all of them the condition of a fixed bandwidth, we can measure the performance 
of each smoother and study where the contribution to these criteria are coming 
from the design space. Apart from statistical considerations, the choice of the 
parameters could be refined by taking into account the nature of the risk considered. 
The results are compared to the Whittaker-Henderson model for which it is not 
necessary to give specific treatment at the boundary.

Keywords: Boundary effect, Local likelihood, Life insurance, Graduation.

JEL - Code: C14, G22.

résumé

La régression locale est une forme populaire de régression non-paramétrique, 
combinant d’excellentes propriétés théoriques avec une simplicité conceptuelle et 
une flexibilité capable de trouver la structure dans de nombreux ensemble de 
données. Les lisseurs issus des régressions locales ajustent localement des polynômes 
aux points aux alentours d’un point cible. L’estimation, à chaque point cible, est 
une moyenne pondérée du polynôme où les observations proches du point cible 
reçoivent les poids les plus élevés. Malheureusement, cette simplicité a des failles. 
Aux bordures, la fonction de poids est asymétrique et l’estimation peut engendrer 
un biais important. Ce biais peut être un problème si la fonction de régression a 
une courbure relativement élevée à la bordure. Cela entraîne une nuisance qui 
affecte les applications ainsi que les mesures globales de performance des esti-
mateurs comme la moyenne des carrés des résidus ou les écarts entre la courbe 
réelle et la courbe estimée.

Dans cet article, nous considérons la réduction des effets de bordures pour le lissage 
des données d’expérience provenant de l’assurance vie. Nous considérons trois 
traitements spécifiques pour réduire l’impact des effets de bordures, incluant des 
systèmes de poids symétriques et asymétriques. Nous analysons les propriétés 
statistiques locales des lisseurs sujets à une restriction a priori de la fenêtre d’ob-
servations. Les systèmes de pondération de ces estimateurs dépendent des paramètres 
de lissage qui sont traditionnellement estimés au moyen de critères d’optimisation 
dépendants des données. Cependant, en imposant à chacun d’eux la condition 
d’une fenêtre d’observations fixe, on peut mesurer la performance de chaque lisseur 
et étudier la provenance des contributions à ces critères. Mis à part les considérations 
statistiques, le choix des paramètres pourrait être affiné en tenant compte de la 
nature du risque. Les résultats sont comparés au modèle de Whittaker-Henderson 
pour lequel il n’est pas nécessaire de donner un traitement spécifique aux bordures.

Mots clés : Effet de bordures, modèle de vraissamblances, assurance-vie, lignage 
des données.

Code JEL : C14, G22.

1. INTRODUCTION

Life tables are used to describe the one-year probability of death 
within a well defined population as a function of attained age. These 
probabilities play an important role in the determination of premium 
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rates and reserves in life insurance. The crude estimates on which life 
tables are based might be considered as a sample from larger popula-
tion and are, as a result, subject to random fluctuation. However, the 
actuary wishes most of the time to smooth these quantities to enlighten 
the characteristics of the mortality of the group considered which he 
thinks to be relatively regular.

Assume that we are given the number of deaths recorded, di, 
and the number of individuals initially exposed to the risk of death, 
li, all aged xi last birthday, and that our experience is limited to this 
single age xi where i = 1, 2, ..., n. The crude estimate of the observed 
mortality rate, qi, is denoted by °qi,



q
d

l
= .i

i

i

 (1)

Then °qi represents the one-year observed probability of death for 
a particular population at age xi which lies above or below the true 
underlying value.

A common prior opinion about the form of the true rates is that 
each true rate of mortality is closely related to its neighbors, that 
is the observations °qj near °qi should contain information about the 
value of the unknown response function ψ at xi. This relationship is 
expressed, recall Gavin et al (1993), by the belief that the true rates 
progress smoothly from one age to the next. It follows that the data 
for several ages xj on either side of age xi can be used to augment the 
basic information we have at age xi, and an improved estimate of qi 
can be obtained by smoothing the individual estimates. In two recent 
studies, Tomas (2012) and Tomas (2011) show the applicability of 
local regressions to model the relation between the crude death rates 
and attained age.

Local likelihood is introduced as a method of smoothing by local 
polynomial in non-Gaussian regression models. A local Binomial 
likelihood model is proposed when the number of initial policyholders 
exposed to risk is available. Let suppose that Lj persons come under 
observation at age xj and continue under observation until they survive 
to xj + 1 or die before. In this case we denote initial exposed to risk 
as L. Moreover, let suppose that the probability of death during the 
year for each one of them is qj, and that the death or survival of one 
is independent of the death or survival of the others. If we call Dj the 
random variable which represents the number of deaths that occur in 
the year, we will use the usual model for the number of deaths,

Dj ~ Binomial(lj, qj),
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and the observed death rate, which is the maximum likelihood estimate 
of qj, is denoted as °qj = dj / lj.

Let now suppose that Lj persons enter observation under hypothesis 
that the force of mortality (instantaneous mortality rate) is a constant 
during the period of observation and that the death or survival of each 
one is independent. In this case Lj represents those central exposed 
to risk, whereas in the previous section Lj denoted initial exposures. 
Hence the force of mortality, ϕj, is the average risk to which popula-
tion is subjected during its passage through the year of age xj + 1 and 
is a different concept from qj, which represents the total effect of 
mortality in terms on proportion who fail to survive the whole year 
of age xj + 1 without reference to the variation of mortality risk over 
the course of that year. According to Brillinger (1986, p. 697), the 
number of deaths which occur in the period of observation, Dj, will 
have a Poisson distribution with average and variance equal to µj. We 
would consider the graduation of µj / Lj, with

Dj ~ Poisson(µj).

The local Binomial and Poisson models, presented above, apply the 
local fitting technic to data of which the relationship can be expressed 
through a likelihood function. Suppose that we have n independent 
realizations y1, y2, ..., yn of the random variable Y with

Yi ~ f(Y, θ),  for i = 1, 2, ..., n

where θi is an unspecified smooth function ψ(xi). To estimate ψ(xi), 
suppose that the function ψ has a (p + 1)th continuous derivative at 
the point xi. For data point xj in a neighborhood of xi we approximate 
ψ(xj) via a Taylor expansion by a polynomial of degree p as:

ψ(x j ) ≈
p=0

P

∑( f ( p)
(xi ) / p!)(x j − xi )

p

=
p=0

P

∑β p(xi )(x j − xi )
p
.

The local log-likelihood, or local kernel-weighted log-likelihood 
as named by Fan et al. (1998) is given by

L(β λ, xi ) =
j=1

n

∑l yj , x
Tβ( )wj ,  (2)

where x = (1, xj – xi, ..., (xj – xi)
p)T, β = (β0, ..., βp)

T, with βp = ψ(p) (xi) / p!, 
p = 0, 1, ..., P and wj denotes a non-negative weight function depending 
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on the target value xi and the measurement pointsj, and in addition, it 
contains a smoothing parameter h = (λ – 1) / 2 which determines the 
sizes of the neighborhood of xi. Maximizing the local log-likelihood 

(2) with respect to β gives the vector of estimators …β β β= ( , , )p
T

0 .

Estimators ψ(p) (xi), p = 0, 1, ..., P, are given by 

ψ βx p( ) = !
p

i p

( )
.

The weighted average produces a smooth estimate of ψ(xi) resulting 
from the weighted linear combination of 2 h + 1 observations sur-
rounding ψ(xi), including itself. The smooth estimates for the whole 
series are obtained by applying the expression (2) in a moving manner.

Unfortunately this simplicity has flaws. At the boundary, the 
smoothing weights function is asymmetric and the estimate may have 
substantial bias. Bias can be a problem if the regression function has 
relatively high curvature in the boundary. It may force the criteria to 
select a smaller bandwidth at the boundary to reduce the bias, but this 
may lead to under-smoothing in the middle of the table.

In this article, we consider the alleviation of this boundary problem 
in the context of graduation by local likelihood models of experience 
data originating from life insurance.

We analyze local statistical properties of the non-parametric 
smoothers, used in the two models presented above, which are sub-
jected to an a priori fixed bandwidth restriction.

We study three specific treatments to reduce the impact of these 
boundary effects including symmetric and asymmetric weight sys-
tems. The weighting systems of these estimators depend on smoothing 
parameters that traditionally are estimated by means of data dependent 
optimization criteria.

Here and throughout we impose the arbitrary condition of a 
fixed bandwidth, λ = 19, which is the optimal theoretical bandwidth 
founded in our previous study, see Tomas (2011). In consequence, we 
can measure the performance of each smoother and study where the 
contributions to these criteria are coming from the design space. Apart 
from statistical considerations, the choice of the parameters can be 
refined by taking into account the nature of the risk considered. The 
results are compared to the Whittaker-Henderson model which does 
not need any treatment in the boundary.

This article begins by presenting in Section 2 a review of the 
development of smoothing approaches. We introduce briefly the non-
parametric smoothers in Section 3, and their weighting system in 
Section 4. Section 5 discusses the smoothing properties based on local 
measures such as fitted degrees of freedom and influence values. All 
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these measures are computed for symmetric and asymmetric (point in 
the boundary) smoothers with the boundaries corrections considered. 
Section 6 presents briefly the criteria used for models selection and 
studies where the contributions to these criteria are coming from the 
design space. Finally, Section 7 summarizes the conclusions drawn 
in the paper.

2. FROM AN HISTORICAL PERSPECTIVE: 
HISTORICAL REVIEW OF THE DEVELOPMENT 
OF SMOOTHING APPROACHES

The problem of smoothing sequences of observations is relevant 
in many branches of sciences. This section reviews the development of 
smoothing methods starting in the late eighteenth to the early twenty 
first centuries, leading up to the development of the use of local poly-
nomial regression and afterward local likelihood methods.

2.1 Early work

Local regression is a natural extension of parametric fitting, so 
natural that local regression arose independently at different points 
in time and in different countries. The setting for this early work was 
univariate and equally spaced xi. It was simple enough that good-
performing smoothers could be developed and were computationally 
feasible by hand calculation. Also, most of the early work arose in 
actuarial studies remark Cleveland and Loader (1996). Mortality and 
sickness rates were smoothed as a function of age.

Haberman (1996, p. 40) reports that smoothing was used as early 
as 1765 by the Swiss mathematician and physicist Johann Lambert 
Daw (1980, p. 357) explains in his 1765’s work (volume 1), he gradu-
ated the value li, at decennial ages, which he had calculated from the 
deaths recorded in the London Bills of Mortality for 1753-1758. He 
does not read off the graduated values of li at all ages from his graph, 
but gives two methods of graduation and/or interpolation. The first 
was a graphical method for introduction osculating parabolas between 
two points. The second was a method of fitting a polynomial of fifth 
degree to represent a section of the curve which was then able to hang 
together with the corresponding polynomials for the immediately 
preceding and succeeding sections of the curve. This methodology is 
effectively what come to be known as osculatory interpolation, and 
was re-invented more than 100 years later by Thomas Sprague.
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John Finlaison, subsequently first president of the Institute of 
Actuaries in January 1823, started preparing the mortality data that 
were to provide the first life table consisting of graduated observa-
tions at individual ages. His 1829’s work is described by Seal (1982 
p. 89), where his formula is based on overlapping piecewise linear arcs 
extending over nine successive values, with eight of the nine being 
used in the next arc, and thus represents the first published example 
of a graduation by the adjusted-average method.

This piecewise approach to smoothing was extended in 1866 by 
the Italian meteorologist and astronomer Giovanni Schiaparelli who 
assumed a cubic polynomial to extend to a stretch of consecutive 
observed values.

In the same year (1866) that Schiaparelli wrote, Wesley Woolhouse 
presented a detailed exposition of graduation of mortality rates using 
summation formulae, stressing the conceptual differences between 
graduation and interpolation. He considered the case where the fourth 
differences of the corrections vi = °qi – qi to an observed series of 
rates had small values and proposed to minimize ∑vi

2

 in terms of 
∆4vi and thus obtain estimates of vi and hence qi. (Seal, 1982, p. 93) 
demonstrates that the equations for q̂i are equivalent to those which 
arise from fitting a piecewise cubic polynomials by least squares to 
equidistant observations.

The use of symmetrical moving weighted average formulae to 
smooth equally spaced observations of a function of one variable 
which generalized Woolhouse’s summation formulae, was systemati-
cally investigated in a series of papers by the American statistician 
Erastus De Forest reports Haberman (1996, p. 41). De Forest’s principal 
innovation was to introduce optimality criteria into the problem of 
estimating the coefficients.

In 1887, occurred Thomas Sprague’s paper on the graphic method 
of graduation. Sprague’s paper of 1887 rediscovered (following Lambert) 
osculatory interpolation showing how formulae could be devised to 
ensure continuity of the first derivatives of overlapping interpolation 
curves. Osculatory interpolation was used as a method of graduation 
for the English life table in the early nineteenth century.

A new style of summation graduation and its testing had started 
with Spencer, in 1904 and 1907, and had blossomed in Vaughan’s 1933, 
1934 and 1935 articles. The method developed by Spencer in his 1904’s 
article had became popular because it was computationally efficient 
and had good performance. We note three crucial properties. First, 
the smoother exactly reproduces cubic polynomials as explained in 
Cleveland and Loader (1996). Second, the smoothing coefficients are 



Insurance and Risk Management, vol. xx(x-x), xxxx-xxxx 2010Assurances et gestion des risques, vol. 80(2), octobre 2012210 Insurance and Risk Management, vol. 80(2), October 2012,

a smooth function of length of the bandwidth and decay smoothly to 
zero at the ends. Third, the smoothing can be carried out by applying 
a sequence of smoothers each of which is simple; this was done to 
facilitate hand computation. Achieving all three of these properties 
is remarkable.

Whittaker (1923) suggested an alternative method of graduation. 
This can be regarded as what would now be called a Bayesian approach 
to graduation, see Taylor (1992). It results in the minimization of the 
combination of a measure of goodness of fit of the graduation to the 
observation and a measure of smoothness.

2.2 Modern work

We have seen that the methods presented in the introduction are 
inherited from a long actuarial tradition. However local regression 
methods received little attention in the statistical literature until the 
late 1970’s.

For Cleveland and Loader (1996), the modern view of smoothing 
by local regression has origins in the 1950’s and 1960’s, with kernel 
methods introduced in the density estimation setting (Rosenblatt, 
1956; Parzen, 1962) and the regression setting (Watson, 1964). Kernel 
methods are a special case of local regression; it amounts to choosing 
the parametric family to consist of constant functions. Kernel methods 
have been brought up to actuarial application by Copas and Haberman 
(1983) and followed by Gavin et al. (1993) and Gavin et al. (1995).

However, recognizing the weaknesses of a local constant approxi-
mation, the more general local regression enjoyed a reincarnation 
beginning in the late 1970’s. It includes the mathematical development 
of Stone (1977), Stone (1980), and the lowess procedure of Cleveland 
(1979). It provides a number of important insights about the choices 
of the smoothing parameters. For example it was nearly a given that 
for most applications the weight function needed to be smooth, that 
local constant fitting was inadequate, and that smoothers needed to 
reproduce exactly (and not just asymptotically) at least a quadratic.

Among other features, the local regression method and linear 
estimation theory trivialize problems that have proven to be major 
stumbling blocks for more widely studied kernel methods. The kernel 
estimation literature contains extensive work on bias correction meth-
ods: finding modifications that asymptotically remove dependence of 
the bias on the slope, curvature, and so on. Examples include boundary 
kernels Müller (1987), higher order kernels Gaser et al. (1985) and 
Schucany (1989). Local regression method can then be viewed as an 
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extension of kernel methods and attempt to extend the theory of kernel 
methods. This treatment has become popular in the 1990s, for example 
Hastie and Loader (1993) and to some extend in Loader (1999). The 
approach has it uses: Small bandwidth asymptotic properties of local 
regression, such as rates of convergence and optimality theory, rely 
heavily on results for kernel methods. But for practical purposes, the 
kernel theory is of limited use, since it often provides poor approxima-
tions and requires restrictive conditions.

Furthermore, while the early smoothing work was based on an 
assumption of a near-Gaussian distribution, the modern view extended 
smoothing to other distributions. Cleveland (1979) developed robust 
smoothers. Later, Tibshirani and Hastie (1987) took local fitting one 
steps further; in any situation where a dependent variable depends on 
independents variables, a local likelihood procedure can be carried 
out. Hence they substantially extended the domain of smoothing to 
many distributional settings such as logistic regression and developed 
general fitting algorithms. The extension to new settings has continued 
in the 1990’s with Loader (1996) and Fan et al. (1998).

We have seen a substantial number of smoothing methods that 
have been suggested in the literature through the history. Most of these 
methods involve a trade off between goodness of fit (closeness of the 
ψ(xi) to the °qi) and the smoothness of the smoothed values ψ(xi). The 
motivation for local regression is that it is easy to understand and to 
interpret; because of its simplicity it can be tailored to work for many 
different distributional assumptions; it adapts well to bias problem 
at boundaries and in regions of high curvature; it does not require 
smoothness and regularity conditions required by other methods such 
as boundary kernels; and so on, see Hastie and Loader (1993) for a 
detailed presentation of the strengths of local regression. Singly, none 
of these provides a strong reason to favor local regression over other 
smoothing methods such as smoothing splines, regression splines 
with knot selection, wavelets, and various modified kernel methods. 
Rather, it is the combination of these issues that combine to make 
local regression attractive.

3. THE NON-PARAMETRIC ESTIMATORS

The non-parametric estimators to be discussed are based on 
different assumptions of smoother building. The local Binomial and 
Poisson kernel-weighted log-likelihood assume different expectation-
variance structures, while the Whittaker-Henderson model is derived 
from the graduation theory and does not take the nature of the data into 
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account. The parameters are estimated by means of data dependent 
optimization criteria which search for an optimal solution between 
both fitting and smoothing of the data.

Next, we discuss briefly each non-parametric smoother and refer 
the reader to Tomas (2012) and Tomas (2011) for more details.

3.1 Local likelihood models

A special case of model (2) occurs when the conditional density 
of Y given X belongs to the exponential dispersion family with a prob-
ability mass function which can be written in the form:

fY (yj;θ j ,φ) = exp
yjθ j − b(θ j ,mj )

aj (φ)
+ c(yj ,φ)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

for specific functions a(.), b(.) and c(.). φ is called the dispersion param-
eter. It is a nuisance parameter not depending on xj. The function a and 
c are such that aj(φ) = φ / mj and c = c(yj, φ / mj), where mj is a known 
weight for each observation xj. Two examples are presented in Table 1.

In the context of graduation of mortality, a local binomial likeli-
hood model is used when the number of initial policyholders exposed 
to risk is available, and hence the graduated probability of death are 
given by η̂(xi), the linear predictor in the Generalized Linear Models 
(GLMs) framework; while for those central exposed to risk, a local 
Poisson model is used and the graduated forces of mortality are derived 
by µ̂(xi / Li.

The unknown function,

µ  x Y X x( ) = ,i i=

TABLE 1
DISTRIBUTIONS OF INTEREST BELONGINGS  
TO THE EXPONENTIAL DISPERSION FAMILY

Distribution of yj θj mj aj(φ) b(θj, mj) c(yj, φ)

Poisson(µj) log(µj) 1 1  exp(θj) – log yj!

Binomial(Lj; qj) log
q

j

1– q
j

⎛

⎝⎜
⎞

⎠⎟
Lj

1

L j

⎛
⎝⎜

⎞
⎠⎟

Lj log(1 + exp θj) log
L j

L jd j

⎛
⎝⎜

⎞
⎠⎟
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is modeled in X by a link function g(.) such as

g
µ(xi )

mi

⎛

⎝⎜
⎞

⎠⎟
= η(xi ).

[Yi] is tied to a linear combination 
j=1

n

∑ wjmj p=0

n

∑ β p(x j − xi )
p  

of the parameters β by a monotonous and differentiable function g(.), 
not necessarily the identity. In consequence, the role of GLMs is that 
of a background model which is fitted locally. We proceed by forming 
the local likelihood as in (2) and estimate the coefficients β = β0, ..., βp 
based on data in the neighborhood of the target point xi. It consists of 
maximizing the local log-likelihood

L β y,wj ,ϕ,mj( ) =
j=1

n

∑wj

yj θ j − b(θi ,mj )

ϕ /mj

+

j=1

n

∑wj c(yj ,ϕ /mj ),  (3)

where [Yj] = b’(θj, mj) = µj and g(µ j /mj ) = p=0

n

∑ β p(x j − xi )
p
= η j ,

with g(.) denoting the link function. Since we want to maximize the 
log likelihood for β0, β1, ..., βp we look for a solution of the set of nor-
mal equations to be fulfilled by the maximum likelihood parameter 
estimates β:

∂L βv y,wj ,φ,mj( )
∂βv

= 0⇔
1

φ j=1

n

∑wj mj (yj −µ j )
(x j − xi )

v

′′b (θ j ,mj ) ′g (µ j /mj )
= 0

for v = 0,1,…, p.

These equations are usually non-linear, and so the solution must 
be obtained through iterative methods. One way to solve those is to use 
Fisher’s scoring method. After some computations, see Tomas (2011), 
the Fisher scoring iterative equation are given by, in matrix notation,

Ι β* =
1

φ
X TWΩ z,

where   denotes the Fisher information matrix, X is the design matrix
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X =

1 x
1
− xi (x

1
− xi )

2
… (x

1
− xi )

P

1 x
2
− xi (x

2
− xi )

2
… (x

2
− xi )

P

    

1 xn − xi (xn − xi )
2
… (xn − xi )

P

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (4)

and W is a diagonal matrix, with entries {wj} j=1
n , such that

wj =
W ( x j − xi / h) if x j − xi / h ≤1,

0 otherwise.

⎧
⎨
⎪

⎩⎪
 (5)

W() denotes a non-negative weight function depending on the target 
value xi and the measurement points xj, and in addition, it contains a 
smoothing parameter h = (λ – 1) / 2 which determines the sizes of the 
neighborhood of xi. Ω is a diagonal matrix with elements

ω jj =
mj
2

′′b (θ j ,mj )

∂µ j

∂η j

⎛

⎝
⎜

⎞

⎠
⎟

2

,  (6)

depending on the variance and link function, since ηj = g(µj / mj), 
we have ∂ηj / ∂µj = g’(µj / mj). Finally, z is the vector of the working 
dependent variables with elements





η +
− µ

′ µz
y

m
g m= ( / ).j j

j j

j
j j  (7)

Hence, a maximum likelihood estimate of β is found by the fol-
lowing iterative process:

• Repeat β* : = (XT W ΩX)-1 XT W Ω z;

• using β*, update the working weight Ω, as well as the working 
dependent variable z until convergence.

Estimation of β is performed using a Fisher’s scoring method 
search in each neighborhood, going in order as i runs from 1 to n.

3.2 The Whittaker-Henderson model

The Whittaker-Henderson model is non-parametric and forms 
a relatively simple and natural version of Bayesian smoothing. The 
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method relies on the combination of a fit and smoothness measure. The 
chosen parameters minimize a linear combination of these two criteria,

M = F + h × S,

where F and S denote the fit and smoothness measures respectively and 
h a parameter allowing more emphasis on the smoothness criterion. 
The fit and smoothness measures are

∑ ∑−
−

F v y y S y= ( ) and = ( ) ,
i

n

i i i
i

n z
z

i
=1

2

=1

2

where vi represents the weight for observation i, taken generally as 
the ratio li / max(li); and z being an other parameter representing the 
polynomial degree. For this optimization problem, we solve the n 
equations given by the partial derivatives of M with respect to each 
of the yi such that,

∂M

∂yi

= 0, i =1,…,n.

With  

≤ ≤ ≤ ≤y yy y= ( ) , = ( )i i n i i n1 1  and V = diag(vi)1≤i≤n, F can be 
written in matrix notation as

 − −y y V y yF = ( ) ( ).T

For the smoothness criterion, writing ∆zy = (∆zyi)1≤i≤n-z, yields to 
S = (∆zy)T ∆zy. To find ∆zy, we introduce a matrix denoted Kz, of dimen-
sion (n – z) × z, where the terms are binomial coefficients of order z 
and where the sign of the coefficients alternates and starts positively 
for z even, ∆zy = Kz × y.

The M criterion can finally be written as

 

  

− − +

− + +

y y V y y y y

y Vy y V y y V y y y

M h K K

h K K

= ( ) ( )

= 2 .

T T
z
T

z

T T T T
z
T

z

It leads to 
∂M

∂y
= 2Vy− 2V y


+ 2hKz

T Kz y . Solving ∂M / ∂y = 0 

leads to the expression:

 + −y V VyhK K= ( ) .z
T

z
1  (8)
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The form of the estimate is simple in that it is linear in the yi. In 
consequence, we can apply the so-called classical criteria to find the 
optimal value of parameters h and z.

Local polynomials fitting have a long history in the smoothing of 
data, Henderson (1916) being one of the earliest classical references. 
Henderson was concerned with the smoothing properties of linear 
estimators, being the first to show that the smoothing power of a linear 
smoother depends on the shape of its weighting system.

4. WEIGHTING SYSTEMS

4.1 The smooth weight diagram

We have seen that, for the Whittaker-Henderson model the form 
of the estimate is simple in that it is linear in the responses yi. That 
is, for each xi there exists some smoothing weights u1(xi), u2(xi), ..., 
un(xi) such that

 ∑y u x y= ( ) .i
j

n

j i j
=1

 (9)

Likewise in a matrix form,









































U

y

y

y

y

y

y

= ,

n n

1

2

1

2

where U denotes the smooth weight diagram for the Whittaker-
Henderson model, an n × n matrix

U =

u
1
(x
1
) u

2
(x
1
) … un (x1)

u
1
(x

2
) u

2
(x

2
) … un (x2 )

   

u
1
(xn ) u

2
(xn ) … un (xn )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,
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with rows u(xi )
T
= u

1
(xi ),u2 (xi ),…,un (xi )( ) = e

1

T
(V + hKz

T Kz )
−1V, see 

expression (8). Here and throughout, we let ev denote a column vector 
having 1 as its vth entry and all other entries equal to zero. The length 
of ev will be clear from the context.

The weighting system of the Whittaker-Henderson model, u(xi), 
depends on the polynomial degree and on the emphasis given to the 
smoothness criterion. These parameters are estimated by means of 
data dependent optimization criteria, such as classical criteria, see 
Section 4 in Tomas (2012).

Since the local likelihood estimate does not have an explicit 
representation, the smooth weight system can not be derived as in the 
previous case. However, we can provide an illustration of the smooth 
weight function associated with the i-th point at the last iteration. The 
weight function associated with the i-th point is used to compute the 
weights in the i-th row of the n × n matrix denoted by S with rows,

s(xi )
T
= e

1

T
(X TWΩX )−1X TWΩ.  (10)

with X denoting the design matrix such as expression (4) and W and 
Ω defined as in (5) and (6) respectively. The weighting system, s(xi), 
depends on the shape of the weight function, the window width and 
the order of the polynomial. Moreover, it depends on the variance 
function and link function through the diagonal matrix Ω.

Note that by assuming Gaussian errors, Ω becomes an diagonal 
matrix with entries 1. In consequence the model reduces to a weighted 
least squares problem and the estimate is linear in the responses. The 
rows of the smooth weight diagram reduces to e

1

T
(X TWX )−1X TW .

4.2 The weighting system shape

The weighting system of local likelihood regression, depends on 
the constellation of smoothing parameters formed by the weight func-
tion, the bandwidth and the degree of the polynomial. In addition, it 
depends on the variance function and on the link function. The first 
three choices depend on assumptions we make about the behavior of 
the true curve. The two latest choices depend on the assumptions we 
make about other aspects of the distribution of the yi.

The choice of link can be driven by convenience as, with local 
regression models, we do not assume the model to be globally correct. 
The variance function depends on the nature of the data considered. 
In consequence only the constellation formed by the weight function, 
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the bandwidth and the degree of the polynomial is estimated by means 
of data dependent optimization criteria, solving the bias and variance 
trade-off. However, by imposing the condition of a fixed bandwidth, 
we can study the weighting system of the smoother.

It is well know that between the three smoothing parameters, the 
weight function has much less influence on the bias and variance trade-
off. The choice is not too crucial, at best it changes the visual quality 
of the regression curve. We consider a weight function W(a) that is

• W(a) > 0 for a < 1;

• W(– a) = W(a) ;

• W(a) is a non increasing function for a ≥ 0 ;

W(a) is some weight function like those given in Table 2, below.

The requirements for W(a) described above are needed for the 
following reasons: (i) is necessary, of course, since negative weights do 
not make sense; (ii) is required since there is no reason to treat points 
to the left of xi differently from those to the right; (iii) is required for 
it seems unreasonable to allow a particular point to have less weight 
than one that is further from xi. Figure 1 displays some of the weight 
functions presented above.

TABLE 2
EXAMPLE OF WEIGHT FUNCTIONS WITH a = xj – xi/ h

Weight function W(a)

Uniform or Rectangular 

Triangular 

Epanechnikov 

Quartic (Biweight) 

Triweight 

Tricube 

Gaussian 

1

2
I ( a ≤1)

(1− a )I ( a ≤1)

3

4
(1− a2 )I ( a ≤1)

15

16
(1− a2 )2 I ( a ≤1)

35

32
(1− a2 )3 I ( a ≤1)

(1− a3 )3 I ( a ≤1)

1

2π
exp

1

2
a2

⎛
⎝⎜

⎞
⎠⎟
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For a weight function W(a), the weights decrease with increasing 
distance xj – xi. The window-width or bandwidth λ determines how 
fast the weights decrease. For small λ, only values in the immediate 
neighborhood of xi will be influential; for large λ, values more distant 
from xi may also influence the estimate. Such a weight function pro-
duces smoothed points that have a smooth appearance.

Figure 2 presents the smooth weights, s(xi), for the local Poisson 
log-likelihood model with the corresponding variance stabilizing link, 
according to the order of polynomial, for the four weighting system 
shapes drawn in Figure 1.

It is obvious that the triweight weight function has the smallest 
dispersion around the target point xi while the rectangular weight func-
tion implies more smoothing. Note that the fit to a polynomial of even 

FIGURE 1
WEIGHTING SYSTEM SHAPE OF SOME WEIGHT 
FUNCTIONS
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FIGURE 2
SMOOTH WEIGHTS s(xi), FOR OBSERVATION i IN THE CENTRAL REGION, COMPUTED WITH λ = 19 
FOR RECTANGULAR (SOLID LINE), TRIANGULAR (DOTTED LINE), EPANECHNIKOV (DASHED LINE) 
AND TRIWEIGHT (DOTDASHED LINE) WEIGHT FUNCTIONS
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degree gives the same result as that of the next odd degree for values 
at the central region. It is due to the use of the variance stabilizing link 
reducing entries wjj in (6) to a constant, see Section 6 in Tomas (2011).

This has been discussed for the least-squares fitting case by Fan 
and Gijbels (1995a, p. 215-218) and Ruppert and Wand (1994). It leads 
as well to symmetric smooth weights while for the Binomial model, 
by the use of the variance stabilizing link, the number of exposures 
appears in wjj, see Section 5 in Tomas (2011), leading to asymmetric 
smooth weights. In addition the smooth weights obtained by a fit to 
a polynomial of even degree are not identical anymore as that of the 
next odd degree for a local likelihood Binomial model.

Figure 3 provides an illustration of the smooth weight diagram S. 
The weight function associated with the i-th point is used to compute 
the weights in the i-th row, B(xi). S in Figure 3 has been computed 
with λ = 19, a polynomial of degree 3 and a triweight weight function 
with boundary correction type 1, see the Section 4.3.

The weights are shown as the height along the i-th row of the 
surface. For values in the central region, the weights form a triweight 
kernel such as Figure 2, center panel. But as the point, at which we are 
estimating the true curve, moves towards the boundaries, the kernel 
overlaps the boundary, becomes asymmetric and some weights are 
negative. Moreover, the height of the kernel increases because fewer 
observations are available.

By fitting local polynomials models to series originating from life 
insurance, we observe a relatively high curvature in the boundaries. 
In consequence, the selection of the constellation of the smoothing 
parameters may be mainly driven by minimizing the criteria in the 
boundaries rather than for the whole data points. It may force the 
criteria to select a smaller bandwidth at the boundary to reduce the 
bias, but this may lead to under-smoothing in the middle of the table.

4.3 Specific treatments for the boundaries

To understand the boundary problem in the context of gradu-
ation, we study three specific treatments including symmetric and 
asymmetric weight systems.

• type 1 uses an asymmetric weighting system. It always uses 
λ observations whatever the target point is. It means, for 
instance, for a target point at the left boundary, it uses all the 
observations κ available at the left side, and λ – 1 – κ at the 
right side. Reciprocally for the right boundary. This type of 
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FIGURE 3
SMOOTHER Sij: LEFT PANEL: i, j = 0, ..., 25, CENTER PANEL: i, j = 25, ..., 75, AND RIGHT PANEL: i, j = 75, ..., 98, 
COMPUTED WITH λ = 19, A POLYNOMIAL OF DEGREE 3, A TRIWEIGHT WEIGHT FUNCTION AND 
BOUNDARY CORRECTION TYPE 1
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correction is found in most smoothing software such as the 
loess() or locfit() functions in R, R Development Core Team 
(2011).

• type 2 uses a different asymmetric weighting system. For 
instance at the left boundary, it uses all observations available 
at the left side, and (λ – 1) / 2 observations at the right side. 
Reciprocally at the right boundary.

• type 3 is a combination of observed rates and an adaptive 
symmetric weighting system. This correction is only applied 
to the left boundary. From age 0 to vp,W the mortality rates 
equal the observed ones. vp,W depends on the polynomial 
degree p and on the weight function W(.) to ensure sufficiently 
observations to fit a polynomial of degree p. Then from vp,W + 1 
to (λ – 1) / 2, we use an adaptive symmetric window width 
with 2 × (xi – 1) +1 observations, where xi is the target point. 
This correction is based on an idea presented by the Dutch 
Actuarieel Genootschap (the Dutch Actuarial Society), see 
Donselaar et al. (2007).

We apply these corrections to the smoothers, presented in Section 3, 
of degree 0 to 4 with four weighting system shapes. Figure 4 shows 
the symmetric and asymmetric weighting system s(xi) for i = 5 (left 
boundary) of the corrections mentioned above with λ = 19.

It is apparent that the symmetric weights of correction type 3 have 
the smallest dispersion around the central value while correction type 1 
implies more smoothing.

5. THE SMOOTHING PROPERTIES

In this Section, we use local statistical measures based on the 
weighting system shapes and weight values to analyze the smoothing 
properties of the smoothers with the boundaries corrections introduced 
in the previous section. The window width, λ, is fixed to 19 observations 
and quantities such the fitted degrees of freedom and the influence 
values are used to measure the amount of smoothing applied. For ease 
of comparisons with the Whittaker-Henderson model smoother U, h 
is fixed to 5 in expression (8) leading approximatively to 19 observa-
tions participating non negligibly to the estimation, having weights 
higher than 1e-2.

The computations are carried out with the help of the software R, 
R Development Core Team (2011). The scripts are available on request.
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5.1 Fitted degrees of freedom

Although the notion of degrees of freedom (DF) does not really 
apply to smoothers, the usefulness is in providing a measure of the 
amount of smoothing that is comparable between different estimates 
applied to the same dataset.

For linear smoothers, among the several possible definitions, we define 
υ2, the equivalent degrees of freedom, by υ

2
=

i=1

n

∑ u(xi )
2

= tr(UUT
). 

While for local likelihood models, the fitted DF are defined as 
∑ [ ]υ η ωx= ar ( )

i

n

i ii2 =1
, where wii is defined as in (6).

As we face a fixed design model, in which we have a single 
observed mortality rate at equally spaced ages, the amount of smoothing 
applied by the local Poisson kernel-weighted log-likelihood is identical 
in the left and right boundary. Oppositely for the local Binomial and 
Whittaker-Henderson models for which the smooths weights depend 
on the sample size li. Hence the amount of smoothing is lower in the 
left boundary than to the right as the number of exposures is larger.

FIGURE 4
SMOOTH WEIGHTS s(xi) FOR i = 5 (LEFT BOUNDARY) 
WITH λ = 19 FOR CORRECTION TYPE 1 (SOLID LINE), 
TYPE 2 (DASHED LINE) AND TYPE 3 (DOTTED LINE)
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Table 3 presents the fitted DF for smoother S in the left boundary, 
that is for observations xi for i = 1, ..., 10. (Recall λ = 19).

The corresponding fitted DF for the Whittaker-Henderson model 
in the left boundary are presented in Table 4.

The fitted DF aid interpretation in providing a measure of the 
amount of smoothing applied. For instance, 1 DF represents a smooth 
model with very little flexibility while 7 DF represents a noisy model 
showing many features.

It is obvious that the amount of smoothing decreases when increas-
ing the degree of polynomial. In addition we observe that the amount 
of smoothing applied is higher when the weight function has a high 
dispersion around the central value. A rectangular weighting system 
shape implies very little flexibility. At the opposite, a triweight weight-
ing shape shows more features.

Note again that a least-squares fit to a polynomial of even degree 
gives the same result as that of the next odd degree for symmetric 
weight function. For the local Binomial model, the difference is at 
three decimals and can not be seen due to rounding.

Finally, it is apparent that boundary correction type 1 induces 
more smoothing in the boundaries than type 2 and type 3. Correction 
type 3, having smooth weights showing the smallest dispersion, has 
the property of showing more features.

The amount of smoothing in the left boundary implied by the 
Whittaker-Henderson model is lying between corrections type 1 and 
type 2. Hence the model has the ability to be slightly more flexible at 
the left boundary than applying correction type 1.

5.2 Influence values

The influence or leverage values, denoted infl(xi), are the diagonal 
elements ui(xi) or equivalently si(xi) of the smooth weight diagram. These 
measure the sensitivity of the fitted curve to the individual data points. 
For local likelihood models, we define the influence function at xi by

infl(xi ) = e1
T (XTWΩX)−1e1,

with X, W and Ω defined as in expressions (4), (5) and (6) respectively. 
The property of influence relates to the fact that as infl(xi) approaches 
one, the corresponding residual approaches zero.
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TABLE 3
FITTED DF FOR LOCAL POISSON AND BINOMIAL MODELS IN THE LEFT BOUNDARY

  Local Poisson model Local Binomial model 

 Weight fct. p = 0 p = 1 p = 2 p = 3 p = 4 p = 0 p = 1 p = 2 p = 3 p = 4 

Corr. type 1 

Rectangular 0.40 1.03 1.47 2.04 2.51  0.40 1.03 1.48 2.05 2.52 

Triangular 0.65 1.17 1.73 2.24 2.80  0.65 1.17 1.74 2.25 2.81 

Epanechnikov 0.56 1.11 1.65 2.17 2.72  0.57 1.12 1.66 2.18 2.73 

Triweight 0.78 1.27 1.91 2.39 2.99  0.79 1.27 1.92 2.40 2.99 

Corr. type 2 

Rectangular 0.66 1.33 1.94 2.61 3.21  0.66 1.33 1.95 2.62 3.22 

Triangular 1.03 1.95 2.87 3.67 4.37 1.03 1.96 2.88 3.67 4.38 

Epanechnikov 0.92 1.81 2.72 3.55 4.25  0.92 1.82 2.73 3.55 4.26 

Triweight 1.25 2.23 3.15 3.93 4.59 1.25 2.24 3.17 3.94 4.60 

Corr. type 3 

Rectangular 3.11 4.77 6.08 3.11 3.11 4.78 4.78 6.08 

Triangular 4.22 5.75 6.94 4.23 4.23 5.77 5.77 6.95 

Epanechnikov 4.11 5.66 6.88 4.12 4.12 5.68 5.68 6.89 

Triweight 4.40 5.90 7.02 4.41 4.41 5.92 5.92 7.03 
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Figure 5 displays the influence values of the smoothers implied 
by the local Poisson and Whittaker-Henderson models.

We are not presenting the values for the local Binomial model as 
we have seen there is not much difference in the amount of smoothing 
applied between the two, and remarks drawn on the Poisson model 
apply to the Binomial as well.

TABLE 4
FITTED DF IN THE LEFT BOUNDARY FOR THE 
WHITTAKER-HENDERSON MODEL, WITH h = 5

Whittaker-Henderson smoother

z = 0 z = 1 z = 2 z = 3 z = 4

0.17 1.23 2.17 2.79 3.26 

FIGURE 5
INFLUENCE VALUES IN THE LEFT BOUNDARY FOR 
CORRECTION TYPE 1 (SOLID BLACK LINE), TYPE 2 
(DASHED LINE), TYPE 3 (DOTTED-DASHED LINE) AND 
WHITTAKER-HENDERSON MODEL (DOTTED LINE)
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For correction type 3, from x1 to υp,W, the smoothed mortality rates 
equal the observed ones. In consequence, the corresponding influence 
values equal 1. υp,W depends on the degree of polynomial and on the 
weighting system to ensure that a sufficient number of observations 
is used to fit the corresponding polynomial.

By using a rectangular weighting system, corrections type 1 
and type 2 gives similar results. Then, by using a weighting system 
shape inducing less dispersion around the central value, the differ-
ences become more apparent. The shape of the influence functions 
drawn by a triangular, Epanechnikov or Triweight weight function is 
relatively similar. In consequence, without loss of generality, we will 
not distinguish the weighting system shapes in the following sections.

Note that the influence values of the Whittaker-Henderson model 
are lying mostly between corrections type 1 and type 2.

By a constant fit, the influence values for corrections type 1, type 2 
and Whittaker-Henderson model are approximatively equal to 0.1 
indicating that yi constitutes about 10% of the fitted value. But the 
main feature is the boundary effect where the influence function shows 
a huge increase. This reflects the difficulty of fitting a polynomial at 
boundary regions. Note also that the effect is more pronounced as we 
increase the order of polynomial. This shows that boundaries are a 
main concern when choosing the order of approximation and, more 
largely, the constellation of smoothing parameters.

6. CRITERIA AND CONTRIBUTION FROM  
THE DESIGN SPACE

The constellation of smoothing parameters are traditionally esti-
mated by means of data dependent optimization criteria. We consider 
two class of criteria. The so-called classical criteria and the plug-in 
methodology introduced by Fan and Gijbels (1995b, p. 376-378) for 
local polynomial regression and extended for local likelihood inFan 
et al. (1998, p. 594-597).

We start by presenting the mortality data and give a brief descrip-
tion of the criteria. For a more detailed discussion, we refer the reader 
to Tomas (2012) and Tomas (2011). We analyze where the contributions 
to these criteria are coming from the design space. Finally we show 
that apart from statistical consideration, the choice of the parameters 
could be refined by taking into account the nature of the risk considered.
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6.1 The data

In the context of graduating mortality data, although age is a 
continuous variable, it is typically truncated in some way, such as 
age last birthday. Thus, the data consist of li observations at age xi, of 
which di die and li – di survive.

Given the discretized nature of a mortality table, it is natural to 
pool the data by using the average at each age, such as expression (1). 
This leads to a fixed design model, in which we have a single observed 
mortality rate at equally spaced ages.

For these applications, we focus on the measurements of the one-
year probability of death for the Dutch Male and Female population 
for the year 2008 at age xi, with i = 0, ..., 98. Figure 6 displays the 
observed statistics of the two datasets.

The data are reported by the Human Mortality Database (2011). 
The Human Mortality Database (HMD) has been initiated by the 
Department of Demography at the University of California Berkeley, 
USA, and the Max Planck Institute for Demographic Research, Rostock, 
Germany. This international project provides detailed mortality and 
population data which can be accessed online for research purposes.

FIGURE 6
OBSERVED STATISTICS FOR DUTCH MALE  
AND FEMALE POPULATION, 2008
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6.2 The classical criteria

6.2.1  For linear smoothers

Classical methods are more or less natural extensions of methods 
used in parametric modeling. We consider the AIC, GCV, Rice’s T and 
the AICC criterion.

The generalized cross-validation (GCV) score, as introduced by 
Craven and Wahba (1979) is


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It is the sum of the single average squared error corrected by a 
factor. In this form, the criterion is very sensitive to the design space. 
Table 5 presents the proportion of the residuals sum of squares (RSS) 
in the boundaries given by the Whittaker-Henderson model targeting 
either the number of death di or the mortality rates qi on the original 
scale.

The proportion of the RSS varies with the underlying structure 
of the data as well as the degree of polynomial z chosen. A quadratic 
fit leads to the highest disturbing nuisance while a cubic and quadratic 
fit perform better in the boundaries.

TABLE 5
PROPORTION OF THE RSS IN THE BOUNDARIES (IN %) 
BY THE WHITTAKER-HENDERSON MODEL, FOR THE 
DUTCH MALE AND FEMALE POPULATION, 2008

 Male population Female population

Target z Left Right Left Right 

di 2 10.07 52.63 6.63 41.13 

3 10.38 35.34 6.70 13.36 

4   7.11 31.52 4.04 16.60 

qi 2   0.01 97.24 0.12 95.14 

3   0.01 94.51 0.20 87.72 

4   0.01 94.66 0.11 86.93 

Source: HMD.
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By targeting the number of death di, we observe that most of the 
curvature appears in the central region, see Figure 6. In consequence, 
the selection of the parameters is less influenced by the boundaries 
than the model targeting the mortality rates on the original scale. 
However, the proportion of the RSS is still high with at most 62.70% 
for the 18 observations being in the boundaries (adding the left and 
right boundaries).

By targeting the mortality rates qi, most of the curvature appears 
in the right boundary. The proportion of the RSS, in the right bound-
ary, represents at least 86.93%. It is apparent that the selection of the 
parameters is driven by minimizing the RSS in the right boundary 
rather than the whole data.

However, the GCV can be seen as a special case of minimizing

σ + ψ Ulog( ) ( ),2

where ψ(.) is a penalty function that decreases with increasing smooth-
ness and  ∑σ −n y y= (1 / ) ( )

i i
2 2  is the average squared residuals, see 

Hurvich et al. (1998, p. 273).

Table 6 presents the proportion of the natural logarithm of RSS in 
the boundaries given by the Whittaker-Henderson model targeting either 
the number of death di or the mortality rates qi on the original scale.

TABLE 6
PROPORTION OF THE LOG(RSS) IN THE BOUNDARIES 
(IN %) BY THE WHITTAKER-HENDERSON MODEL, FOR 
THE DUTCH MALE AND FEMALE POPULATION, 2008

 Male population Female population

Target z Left Right Left Right 

di 2 11.05 17.62 10.62 17.83 

3 10.63 15.68 11.17 15.43 

4 10.00 13.49   8.85 15.46 

qi 2   8.91   4.99   8.66   5.56 

3   8.90   5.00   8.71   5.78 

4   9.20   5.04   9.24   6.02 

Source: HMD.



Assurances et gestion des risques, vol. 80(2), octobre 2012232

By taking the natural logarithm of the average square errors, the 
variability is reduced and the criterion less affected by the boundaries.

The choice ψ(U) = – 2 log(1 – tr(U / n)) yields the GCV criterion, 
while ψ(U) = 2 tr(U / n) yields the AIC criterion

σ + U nlog( ) 2 tr( ) / .2

If ψ(S) = – log{1 – 2tr(U / n)} is chosen, we obtain the criterion 
suggested by Rice (1984). A last alternative can be mentioned. Hurvich 
et al. (1998, p. 277) propose to use the criterion AICC, a corrected 
version of the AIC,



( )σ + +
+

− −
U

U
AICC

n
= log( ) 1

2 tr( ) 1

tr( ) 2
.2

The first term measures the quality of the adjustment while the 
second term evaluate the model complexity.

Figures 7, 9, 11, and 13 present the pointwise contribution to the 
criteria mentioned for the Whittaker-Henderson models, for the Dutch 
male and female population. They illustrate the homogenization of 
the pointwise contribution and the loss of influence of the boundaries.

Having in common the logarithm of the RSS as stochastic com-
ponent, the criteria mentioned only differ by the penalty functions  
ψ(U). Hence the pointwise contributions to the criteria, in Figures 7, 
9, 11, and 13, display a relatively similar shape.

6.2.2  For likelihood models

In case of local likelihood models, it is natural to consider diag-
nostics based on the ratio µy x/ ( )i i . One possible loss function is the 
deviance (or scaled deviance) for a single observation (xi, yi), defined by



 ( )( ) ( ) { } { }θ φ θ − θ µ − θ + θ µD y x m y y b y b, ( ) = 2 / ( ) ( ) ( ) ( ) .i i i i i i i i

Examples of the form of deviances are given in Table 7.

The total deviance is defined as ∑ ( )θD y x, ( )
i

n

i i=1
. It leads to a 

generalization of the Akaike information criterion to local likelihood 
models defined in Loader (1999, p. 69) as
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 ∑ ( )( ) ( )θ µ θ µ + υAIC D y( ) = , ( ) 2 ,i
i

n

i i
=1

1

where υ1 is the degrees of freedom for the local likelihood fit, defined 

by 
i=1

n

∑ infl(xi )ω ii , where wii is defined as in (6). Table 8 presents the 
proportion of the contribution to the AIC criterion in the boundaries 
given by the local likelihood models.

The contribution varies with the underlying structure of the 
data. The females mortality patterns are less pronounced than the 
males, and, thus the resulting contribution to the criterion is smaller. 
It is apparent that the local Poisson model is less influenced by the 
boundaries than the local Binomial model as most of the curvature 
appears in the central region.

Correction type 1 leads to the highest contributions to the AIC. This 
treatment induces the highest amount of smoothing in the boundaries 
and thus leads to the highest disturbing nuisance when choosing the 
constellation of smoothing parameters. With at least 52.02% and 57.51% 
to 62.03% and 81.01% of the AIC in the boundaries (adding the left 
and right boundaries)respectively for the local Poisson and Binomial 
models, it is obvious that the selection of the smoothing parameter is 
driven by minimizing the criterion in the boundaries rather than for 
the whole data points.

The disturbing nuisance has reduced when treatment type 2 is 
used. However the contribution to the AIC is still relatively high with 
at most 51.74% and 32.94%, for the local Poisson and Binomial models 
respectively, for the 18 observations in the boundaries.

Correction type 3 implies smooth weights having the smallest 
dispersion around the central value. In consequence, it leads to the 
smallest disturbing nuisance. The contribution to the criterion for 

TABLE 7
EXAMPLES OF FORMS OF SCALED DEVIANCE

GLM Scaled Deviance 

Poisson  ∑ ( )φ µ − − µm y y y2 / log( / ) ( )
i i i i i i i

Binomial  ∑ ( )( )φ µ + − − − µm y y n yi n y n2 / log( / ) ( ) log ( ) / ( )
i i i i i i i i i i
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TABLE 8
CONTRIBUTION TO THE AIC IN THE BOUNDARIES (IN %), FOR THE DUTCH MALE AND FEMALE 
POPULATION, 2008

Local Poisson model  Local Binomial model 

Male population Female population Male population Female population

Treatment p Left Right Left Right Left Right Left Right 

Type 1 2 49.21 12.82 45.07 14.64 78.48   2.53 73.20   4.52 

3 45.22 12.91 32.99 20.77 71.87   2.95 60.59   7.20 

4 38.42 15.15 26.54 25.48 63.31   3.41 48.74   8.77

Type 2 2 35.45 16.29 29.22 18.86 23.99   8.95 16.67 14.01 

3 27.86 17.00 19.37 24.99 14.33   8.99   8.80 16.65 

4 19.00 19.94 12.40 30.38   8.90   8.47   4.66 16.31

Type 3 2   1.14 25.92   0.94 26.37   4.06 11.32   2.76 16.46 

3   1.42 23.27   0.98 30.72   4.10 10.09   2.62 17.81

4   1.56 24.31   1.14 34.30   4.17   8.93   2.61 16.67

Source: HMD.
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observations in the left boundary has strongly reduced while the 
contribution in the right boundary has inflated. This type of treatment 
leads to under-smoothed figures in the left boundary and his relative 
merit would depend on the underlying smoothness of the data.

The pointwise contribution to the criteria is displayed in Figures 
8 and 12 for the local Poisson model and in Figures 10 and 14 for the 
local Binomial model, left column, respectively for the Dutch male 
and female population, with the three specific treatments considered 
in section 4.3.

It is apparent that corrections type 1 and type 2 yield the highest 
contribution in the boundaries while correction type 3 is less suffering 
from their influences. However, this treatment induces that observations 
in the right side receive more weight in the selection of the smoothing 
parameters than observations in the left side. For local Poisson model, 
we observe an important contribution to the criterion for observa-
tions around age 60, that is where the number of death shows a little 
hump due to a cohort effect, see Figure 6. This contribution is larger 
for the male than the female population, as the mortality patterns of 
the male population are more pronounced. This is true as well for the 
local Binomial model, where we observe, for the male population, an 
important hump around age 18 corresponding to the fit of the accident 
hump. This contribution is smaller for the female population as the 
accident hump is less accentuated.

It shows the resulting difficulty of applying a global smoothing 
approach when the true curve presents a clear structure and rapid 
changes in the curvature.

One solution for an homogeneous contribution of the design space 
to the criterion would be to modify the AIC by taking the logarithm of 
the deviance. It would lead, as for the criteria for linear smoothers, to 
a reduction in the variability and the criterion would be less affected 
by the boundaries.

6.3 The Plug-in methodology

Plug-in methods rely on an approximation of the bias via Taylor 
series expansions. The bias of the estimate is written as a function of 
the unknown ψ, and is approximated through Taylor series expansions. 
A pilot estimate of ψ is then plugged in to derive an estimate of the 
bias and hence an estimate of the mean squared error. The optimal 
bandwidth minimizes this estimated measure of fit.

MSE p,v (xi ,h) = (v!)
2
bias p,v

2

(xi )+ var


p,v (xi )( ).  (11)
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FIGURE 7
POINTWISE CONTRIBUTION TO THE CLASSICAL CRITERIA FOR THE WHITTAKER-HENDERSON 
MODEL TARGETING THE NUMBER OF DEATH, DI, DUTCH MALE POPULATION, 2008. QUADRATIC 
FIT (DASHED LINE), CUBIC FIT (FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 8
POINTWISE CONTRIBUTION TO THE CRITERIA 
FOR THE LOCAL POISSON MODEL TARGETING THE 
NUMBER OF DEATH, DI, DUTCH MALE POPULATION, 
2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT 
(FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 9
POINTWISE CONTRIBUTION TO THE CLASSICAL CRITERIA FOR THE WHITTAKER-HENDERSON 
MODEL TARGETING THE MORTALITY RATE, QI, DUTCH MALE POPULATION, 2008. QUADRATIC 
FIT (DASHED LINE), CUBIC FIT (FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 10
POINTWISE CONTRIBUTION TO THE CRITERIA  
FOR THE LOCAL BINOMIAL MODEL TARGETING THE  
MORTALITY RATE, QI, DUTCH MALE POPULATION, 
2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT 
(FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 11
POINTWISE CONTRIBUTION TO THE CLASSICAL CRITERIA FOR THE WHITTAKER-HENDERSON 
MODEL TARGETING THE NUMBER OF DEATH, DI, DUTCH FEMALE POPULATION, 2008. QUADRATIC 
FIT (DASHED LINE), CUBIC FIT (FULL LINE) AND QUARTIC FIT (DOTTED LINE
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FIGURE 12
POINTWISE CONTRIBUTION TO THE CRITERIA 
FOR THE LOCAL POISSON MODEL TARGETING THE 
NUMBER OF DEATH, DI, DUTCH FEMALE POPULA-
TION, 2008. QUADRATIC FIT (DASHED LINE), CUBIC 
FIT (FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 13
POINTWISE CONTRIBUTION TO THE CLASSICAL CRITERIA FOR THE WHITTAKER-HENDERSON 
MODEL TARGETING THE MORTALITY RATE, QI, DUTCH FEMALE POPULATION, 2008. QUADRATIC 
FIT (DASHED LINE), CUBIC FIT (FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 14
POINTWISE CONTRIBUTION TO THE CRITERIA  
FOR THE LOCAL BINOMIAL MODEL TARGETING THE 
MORTALITY RATE, QI, DUTCH FEMALE POPULATION, 
2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT 
(FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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With the estimated MSE, Fan et al. (1998, p. 599-600) formulate 
a bandwidth selection rule as follows: Fit a polynomial of order p + a 
(choosing a = 2) and find the pilot bandwidth h° that minimizes the 
integrated extended residual squares criterion,

IERSC(h) = ∫ERSC(t,h)dt,

with the ERSC defined as

( )σ + +ERSC x h x p N( , ) = ( ) 1 ( 1) / ,i i
2

where N-1 is the first diagonal element of the matrix (XT W X)-1 XT W 2 
X (XT W X)-1 and σ x( )i

2 is the normalized weighted residual sum of 
squares using the working dependent variable z defined as expression 
(7) after fitting locally a (p + a)th order polynomial. The intuition 
behind the ERSC criterion is that when the local polynomial does not 
fit well (the bandwidth is too large), the bias is large and hence also 
the residual sum of squares σ x( )i

2 . When the bandwidth is to small, 
the variance term N tends to be larger. So the ERSC quantity protects 
against both extreme choices.

Thus, having the optimal bandwidth h° for estimating βp+1, obtain 

estimates β + x( )p i1 , β + x( )p i2  and σ x( )i
2 . With these estimated 

parameters, compute the estimated bias bias p,v (xi )  and variance 
var p,v (xi )  of β v

. Combining these estimates yield to the estimated 
MSE (11). This leads to the bandwidth selector

∫{ }h MSE t h dt= arg min ( , ) .p v
h

p v, ,

The approach developed by Fan et al. (1998) makes it possible 
to assess the bias without going into deep asymptotics. It differs from 
the usual plug-in procedure (see for instance Park and Marron (1990), 
Sheather and Jones (1991), and Gasser et al. (1991) in the sense that the 
elements of the smooth weight diagram S are not further replaced by 
their asymptotics counterparts. These quantities are already known, 
andFan and Gijbels (1995b, p. 377) argue that replacing them by their 
corresponding asymptotic quantities introduces not only some extra 
approximation but also extra unknown parameters.

Figures 8, 10 and 12, 14, center column, show the pointwise 
contribution to the ERSC for the local Poisson model and the local 
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Binomial model respectively, for the Dutch male and female popula-
tion, with the three specific treatments considered in section 4.3.

We observe that the contribution of the observations to the ERSC 
depends on the data on which the criterion is applied. For the local 
Poisson model, the contributions follow broadly the distribution of the 
number of death, while for the local Binomial model the contributions 
are more uniform, raising with the increasing curvature of the mortality 
rates when approaching the right boundary. Moreover, the criterion 
is not suffering from the boundary effects as the RSS component is 
weighted by the variance term N. Because the variance is larger at the 
boundaries, the resulting contributions of the observations are lower.

Table 9 presents the contribution (in %) to the log(MSE) in the 
boundaries given by the local likelihood models. We chose to use the 
natural logarithm of the (MSE) rather than the original scale because 
the selection of the smoothing parameter on the original scale is driven 
by minimizing the criterion in the boundaries at 99.99%. In conse-
quence, by taking the natural logarithm, the variability is reduced and 
the choice of the smoothing parameters is not entirely dictated by the 
fit in the boundaries as shown in the table below.

As remarked previously, the contribution varies with the underly-
ing structure of the data, however, the relation is reversed. The local 
Poisson model targeting the number of death is more influenced by 
the boundaries than the local Binomial model due to the log transform 
of the criterion.

Corrections type 1 and type 2 lead to similar results showing 
the highest disturbing nuisance. With at most 37.47% and 42.79% of 
the log(MSE) in the boundaries for the local Poisson, respectively for 
corrections type 1 and type 2, the weight given to the 18 observations 
in the boundaries in selecting of the smoothing parameters is still 
relatively large.

Correction type 3 leads to the smallest disturbing nuisance for 
the local Poisson model. The contribution for observations in the left 
boundary has strongly reduced while the contribution in the right 
boundary has inflated, being similar to the two other treatments. For 
the local Binomial model, the three specific treatments give relatively 
similar results. The benefit of using correction type 3 is lost by using 
the log transform of the criterion.

The pointwise contribution to the log(MSE) is presented in Figures 
8 and 12 for the local Poisson model and in Figures 10 and 14 for the 
local Binomial model, right column, respectively for the Dutch male 
and female population, with the three specific treatments considered 
in section 4.3.
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TABLE 9
CONTRIBUTION TO THE LOG(MSE) IN THE BOUNDARIES (IN %), FOR THE DUTCH MALE AND 
FEMALE POPULATION, 2008

Local Poisson model  Local Binomial model 

Male population Female population Male population Female population

Treatment p Left Right Left Right Left Right Left Right 

Type 1 2 16.72 11.49 14.49 15.17   7.81   4.03   7.94 4.87 

3 21.07 16.40 21.24 16.17   6.46   2.83   7.07 2.73 

4   8.35 11.23   9.34 10.88   8.93 10.67   8.91 8.13

Type 2 2 16.21 11.56 11.49 15.70   7.88   4.03   8.15 4.86 

3 19.37 16.75 28.01 14.78   8.61   2.77   7.56 2.72 

4 12.10 10.77 12.39 10.51 10.03 10.54   9.69 8.06

Type 3 2   5.30 13.07   4.40 16.97   9.12   3.98   8.92 4.82 

3   4.94 19.75   4.86 19.52   9.37   2.74   9.27 2.67

4   3.29 11.87   3.28 11.61 13.94 10.07 13.86 7.67

Source: HMD.
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It is obvious that, in case of local Poisson model, the treatments 
type 1 and type 2 give the highest contribution in the boundaries while 
correction type 3 is less suffering from their influence. We observe 
that observations in the right side, that is where the number of death is 
higher, contribute more in the criterion and thus receive more weight 
in the choice of the smoothing parameters.

In case of local Binomial model, we observe that observations in 
the central region contribute more to the criterion than observations in 
the boundaries. However, taking the log transform of the criterion does 
not only reduced the influence of the boundaries regions, but reduce the 
pointwise contribution with the increasing curvature of the observed 
mortality rates. In consequence, it may force the criterion to select a 
larger bandwidth. This may lead to over-smoothing in the end of the 
table and thus underestimating the mortality rates at the oldest ages.

Further, we consider restricting the computation of the criteria 
to observations in the central region and study where the contribution 
to these criteria are coming from the design space. Then, apart from 
statistical considerations, the choice of the smoothing parameters can 
be refined by taking into account the nature of the risk considered.

6.4 Practical considerations

Restricting the observations participating in the computation of 
the criteria helps to reduce the boundary effects argue Fan et al. (1998). 
At the boundaries, the pointwise contribution are too large because of 
numerical instabilities, underlying structure and scarcity of the data. 
Figures 15, 17 and 19, 21, first row, show the pointwise contribution to 
the criteria for the local Poisson model and the local Binomial model 
respectively, for the Dutch male and female population, when restrict-
ing the contribution to observations in the central region.

The pointwise contributions to the criteria differ due to the underly-
ing structure of the data as the mortality patterns are more pronounced 
for the male than the female population. We observe that observa-
tions around age 18, corresponding to the accident hump, as well as 
observations around 60, corresponding to a cohort effect, contribute 
more to the criteria for the male population when fitting both of the 
local likelihood models.

By fitting the local Poisson model, we notice an increase of the 
pointwise contribution with the number of death. This is particularly 
visible for the ERSC and log(MSE). On the other hand, in case of 
local Binomial model, the pointwise contribution to the ERSC and 
log(MSE) tends to decrease as the curvature of the observed mortal-
ity rates increases.
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FIGURE 15
POINTWISE CONTRIBUTION TO THE CRITERIA WHEN 
RESTRICTING AND WEIGHTING THE OBSERVATIONS 
FOR THE LOCAL POISSON MODEL TARGETING THE 
NUMBER OF DEATH, DI, DUTCH MALE POPULATION, 
2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT 
(FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 16
POINTWISE CONTRIBUTION TO THE RICE’S T CRITERION WHEN RESTRICTING AND WEIGHTING 
THE OBSERVATIONS FOR THE WHITTAKER-HENDERSON MODEL TARGETING THE NUMBER OF 
DEATH, DI, DUTCH MALE POPULATION, 2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT (FULL 
LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 17
POINTWISE CONTRIBUTION TO THE CRITERIA WHEN 
RESTRICTING AND WEIGHTING THE OBSERVATIONS 
FOR THE LOCAL BINOMIAL MODEL TARGETING THE 
MORTALITY RATE, QI, DUTCH MALE POPULATION, 
2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT 
(FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 18
POINTWISE CONTRIBUTION TO THE RICE’S T CRITERION WHEN RESTRICTING AND WEIGHTING 
THE OBSERVATIONS FOR THE WHITTAKER-HENDERSON MODEL TARGETING THE MORTALITY 
RATE, QI, DUTCH MALE POPULATION, 2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT (FULL 
LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 19
POINTWISE CONTRIBUTION TO THE CRITERIA WHEN 
RESTRICTING AND WEIGHTING THE OBSERVATIONS 
FOR THE LOCAL POISSON MODEL TARGETING THE 
NUMBER OF DEATH, DI, DUTCH FEMALE POPULA-
TION, 2008. QUADRATIC FIT (DASHED LINE), CUBIC 
FIT (FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 20
POINTWISE CONTRIBUTION TO THE RICE’S T CRITERION WHEN RESTRICTING AND WEIGHTING 
THE OBSERVATIONS FOR THE WHITTAKER-HENDERSON MODEL TARGETING THE NUMBER OF 
DEATH, DI, DUTCH FEMALE POPULATION, 2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT (FULL 
LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 21
POINTWISE CONTRIBUTION TO THE CRITERIA WHEN 
RESTRICTING AND WEIGHTING THE OBSERVATIONS 
FOR THE LOCAL BINOMIAL MODEL TARGETING THE 
MORTALITY RATE, QI, DUTCH FEMALE POPULATION, 
2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT 
(FULL LINE) AND QUARTIC FIT (DOTTED LINE)
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FIGURE 22
POINTWISE CONTRIBUTION TO THE RICE’S T CRITERION WHEN RESTRICTING AND WEIGHTING 
THE OBSERVATIONS FOR THE WHITTAKER-HENDERSON MODEL TARGETING THE MORTALITY 
RATE, QI, DUTCH FEMALE POPULATION, 2008. QUADRATIC FIT (DASHED LINE), CUBIC FIT (FULL 
LINE) AND QUARTIC FIT (DOTTED LINE)
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These features can also be seen in the pointwise contribution 
to the Rice’s T criterion used for linear smoother, shown in Figures 
16, 18 and 20, 22, for the Whittaker-Henderson model targeting the 
number of death and the mortality rates on the original scale, for the 
Dutch male and female population respectively.

However, in graduating the mortality rates, the diminution of the 
pointwise contribution with the increasing curvature can be problem. It 
may force the criterion to select a larger bandwidth and this may lead to 
over-smoothing in the end of the table. It results in underestimating the 
mortality rates and in missing the mortality pattern of the oldest ages.

In practice, the search for an optimal criterion depends not only on 
statistical considerations but also on the nature of the risk considered. 
A smoothing method well suited for the annuities may be not the case 
for the death benefits. In the first case, we have to represent effectively 
the remaining life expectancy in the regions where the amount of 
exposure is high. In the second case, we have to well represent the 
observed deaths where the number of death is large and these regions 
may not necessarily those where there are more exposures, such as 
the female population.

By weighting the criteria according to the nature of the risk 
considered, we can take these practical considerations into account. 
The choice of the constellation of the smoothing parameters can be 
refined by weighting the criteria according the reliability of the data,

• by li j∑ (l j )  in case of annuities, and

• by di j∑ (d j )  in case of death benefits.

Table 10 presents the contribution to the criteria for observations 
in the age range representing 80% of the exposures and number of 
death for the Dutch male and female population after weighting the 
criteria according to the nature of the risk considered.

Figures 15, 17 and 19, 21, second and third row, show the pointwise 
contribution to the criteria for the local Poisson model and the local 
Binomial model respectively, for the Dutch male and female popula-
tion, when restricting the contribution to observations in the central 
region and weighting according the reliability of the data.

For the male population, 80% of the exposures appears in the 
age range 8-67. For the female population the age range corresponds 
to 8-70. In case of annuities, by weighting by lj / Σj(lj) most of the 
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TABLE 10
CONTRIBUTION TO THE CRITERIA (IN %) FOR OBSERVATIONS IN THE AGE RANGE REPRESENTING 
80% OF THE EXPOSURES AND NUMBER OF DEATH FOR THE DUTCH MALE AND FEMALE POPULATION, 
2008. COMPUTED WITH A CUBIC FIT AND A TRIWEIGHT WEIGHT FUNCTION

 Local Poisson Local Binomial 

Population Age range li Rice’s T AIC ERSC log(MSE) AIC  ERSC log(MSE) 

Male 8-67 80 91.27 85.85 72.87 82.92 90.06 89.20 89.84 

Female 8-70 80 90.38 81.86 67.98 79.54 84.74 88.36 86.40 

Population Age range di Rice’s T AIC ERSC log(MSE) AIC ERSC log(MSE) 

Male 59-90 80 89.76 90.07 93.09 89.91 86.83 85.05 83.49 

Female 46-90 80 98.53 99.26 99.34 98.52 98.21 96.34 96.28 

Source: HMD
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criteria applied to the local Poisson model (force of mortality) and to 
the Binomial model (probability of death) provides a good represen-
tation. The contribution to these criteria, for observations in the age 
range considered, are mostly above 80%. Only the ERSC provides a 
poor representation when fitting the local Poisson model due to the 
distribution of the criterion following broadly the observed number 
of death.

80% of the deaths appears in the age ranges 59-90 and 46-90 
respectively for the male and female population. In case of death 
benefits, by weighting the criteria by di / Σj(dj), the proportion of the 
contributions from observations in the age range are above 80% show-
ing a good representation of the risk considered.

For linear smoothers, the representation of the risk given by the 
Rice’s T and variations of the classical criteria is satisfactory. In con-
sequence, weighting the criteria by the reliability of the data leads to 
a better representation of the nature of the risk considered whatever 
the model used, graduating the force of mortality or the probability 
of death.

7. CONCLUSIONS AND FURTHER RESEARCH

Local regression combines excellent theoretical properties with 
conceptual simplicity and flexibility. It is very adaptable, and it is also 
convenient statistically.

However, for the purpose of graduating series originating from 
life insurance, the boundaries effects are real problems. For graduating 
the force of mortality by a local Poisson model targeting the number 
of death, or graduating the probability of death by a local Binomial 
model targeting the mortality rates, the selection of the smoothing 
parameters by classical criteria is driven by minimizing the criteria in 
the left boundary rather than the whole data. In consequence it forces 
the criteria to select a smaller bandwidth at the boundary to reduce 
the bias, leading to under-smoothed figures in the middle of the table.

We studied three specific treatments to reduce these boundar-
ies effects including symmetric and asymmetric weighting systems. 
Between the treatments considered, correction type 1 leads to the 
worst results. This correction leads to the highest amount of smooth-
ing applied in the boundaries. In consequence, by minimizing the 
deviance in the boundaries, the criteria select a smaller bandwidth to 
reduce the bias in the boundaries leading to under-smoothed figures 
in the central region. Note that this type of correction is found in most 
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in smoothing softwares. It implies that a lot of care should be taken 
when selecting the constellation of smoothing parameters and exclusive 
reliance in practice on a global criterion is unwise because a global 
criterion does not provide information about where the contributions 
are coming from the design space.

One solution leading to homogeneous contributions for likeli-
hood models, would be to take the log transform of the criteria in 
a similar manner than the criteria for linear smoothers. It would 
reduce the variability and the criteria would be less affected by the 
boundaries effects.

However, such transformation does not solve all the issues. By 
using a plug-in method for local Binomial model or graduating the 
mortality rates by the Whittaker-Henderson model, the contribution 
of the observations to the estimated log(MSE) or respectively by the 
classical criteria decreases with the increasing curvature of the observed 
mortality rates. It may force the criterion to select a larger bandwidth 
and this may lead to over-smoothing in the end of the table, resulting 
in underestimating the mortality rates and missing the mortality pat-
tern of the oldest ages.

Finally, we restricted the observations contributing to the criteria 
to the central region and applied weights according to the reliability of 
the data. These practical considerations enhance clearly the optimization 
criteria and the choice of the constellation of the smoothing parameters 
is refined, leading to a good representation of the risk considered.

These are illustrations of the weakness of a global bandwidth 
and call for an adaptive smoothing procedure. Rather than restricting 
the observations to the central region, we would use a more flexible 
approach. It would be to allow the constellation of smoothing param-
eters to vary across the age range to vary the amount of smoothing 
in a location dependent manner or to allow adjustment based on the 
reliability of the data and on the nature of the risk considered.
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