Assurances et gestion des risques Insurance and Risk Management #### **Cross Hedging with Single Stock Futures** Chris Brooks, Ryan J. Davies and Sang Soo Kim Volume 74, Number 4, 2007 URI: https://id.erudit.org/iderudit/1091736ar DOI: https://doi.org/10.7202/1091736ar See table of contents Publisher(s) Faculté des sciences de l'administration, Université Laval **ISSN** 1705-7299 (print) 2371-4913 (digital) Explore this journal #### Cite this article Brooks, C., Davies, R. & Kim, S. (2007). Cross Hedging with Single Stock Futures. *Assurances et gestion des risques / Insurance and Risk Management*, 74(4), 473–504. https://doi.org/10.7202/1091736ar #### Article abstract This study evaluates the efficiency of cross hedging with single stock futures (SSF) contracts. We propose a new technique for hedging exposure to an individual stock that does not have options or exchange-traded SSF contracts written on it. Our method selects as a hedging instrument a portfolio of SSF contracts which are selected based on how closely matched their underlying firm characteristics are with the characteristics of the individual stock we are attempting to hedge. We investigate whether using cross-sectional characteristics to construct our hedge can provide hedging efficiency gains over that of constructing the hedge based on return correlations alone. Overall, we find that the best hedging performance is achieved through a portfolio that is hedged with market index futures and a SSF matched by both historical return correlation and cross-sectional matching characteristics. We also find it preferable to retain the chosen SSF contracts for the whole out-of-sample period while re-estimating the optimal hedge ratio at each rolling window. Tous droits réservés © Faculté des sciences de l'administration, Université Laval, 2007 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research. https://www.erudit.org/en/ CORP. FRANK Assurances et gestion des risques, vol. 74(4), janvier 2007, 473-504 Insurance and Risk Management, vol. 74(4), January 2007, 473-504 ### Cross Hedging with Single Stock Futures by Chris Brooks, Ryan J. Davies and Sang Soo Kim #### ABSTRACT This study evaluates the efficiency of cross hedging with single stock futures (SSF) contracts. We propose a new technique for hedging exposure to an individual stock that does not have options or exchange-traded SSF contracts written on it. Our method selects as a hedging instrument a portfolio of SSF contracts which are selected based on how closely matched their underlying firm characteristics are with the characteristics of the individual stock we are attempting to hedge. We investigate whether using cross-sectional characteristics to construct our hedge can provide hedging efficiency gains over that of constructing the hedge based on return correlations alone. Overall, we find that the best hedging performance is achieved through a portfolio that is hedged with market index futures and a SSF matched by both historical return correlation and cross-sectional matching characteristics. We also find it preferable to retain the chosen SSF contracts for the whole out-of-sample period while re-estimating the optimal hedge ratio at each rolling window. Keywords: Single stock futures, hedging, Universal Stock Futures, OneChicago. #### The authors: Chris Brooks is a Professor of Finance at the ICMA Centre, University of Reading, UK. Ryan J. Davies is an Assistant Professor and the Lyle Howland Term Chair in Finance at Babson College, Massachusetts. Sang Soo Kim is the Head of Commodity Derivatives at Korea Development Bank. #### Acknowledgements: A previous version of this paper was circulated under the title "Reducing basis risk for stocks by cross hedging with matched futures". We are grateful for comments received from an anonymous referee of this journal, and to seminar participants at University College Dublin, Babson College, and the 2005 Northern Finance Association meetings. The views expressed in this paper are those of the authors and do not necessarily reflect those of Korea Development Bank. Dans cet article nous étudions l'efficacité de la gestion du risque croisé au moyen de contrats à terme sur des actions ordinaires uniques (CATOU). Nous proposons ainsi une nouvelle technique pour gérer le risque inhérent à la détention d'un titre unique pour lequel il n'y a pas d'options ou de CATOU qui se transigent sur des marchés organisés. Notre méthode utilise un portefeuille de CATOU choisis sur la base de caractéristiques des firmes sous-jacentes qui correspondent le mieux aux caractéristiques de la firme dont nous cherchons à répliquer le CATOU. Nous comparons ainsi l'utilisation de caractéristiques idiosyncrasiques d'un portefeuille de firmes à une méthode basée sur la corrélation des rendements pour gérer le risque à terme du titre d'une firme en particulier. Nous trouvons qu'il est optimal de gérer le risque d'un titre sur lequel aucun CATOU n'existe en combinant un portefeuille de CATOU choisis en fonction des corrélations historiques et de caractéristiques propres aux firmes avec des contrats à terme sur un indice boursier. Mots clés: CATOU, gestion du risque, Universal Stock Futures, OneChicago. #### I. INTRODUCTION There are a variety of reasons why retail and institutional investors may have substantial undiversified exposures to single stocks. For example, an investment bank may acquire shares through syndication that are subject to a covenant restricting their sale. Similarly, an investor may hold stock options that are currently deep in the money but for which selling is not permitted for a prescribed period. Or, a fund manager may have a large exposure to a stock that he does not want to close out. In all of these cases, the investor may desire to hedge, rather than sell, his shares as protection against price falls. One way that an investor could deal with such a problem is to enter into an offsetting short position. Short selling is likely to be a high cost tool because of its associated margin requirements, up-tick trading restrictions, loan interest, and potential risk of a short squeeze. As well, there are potential problems locating a stock to borrow and, for retail investors there a significant risk of the stock being unexpectedly recalled. As an alternative, the investor could use stock options. This is often impractical, however, since the vast majority of listed stocks do not have exchange-traded options written on them and over-the-counter option markets are often not directly accessible to retail investors. Furthermore, the prices of over-the-counter options are less transparent and may be subject to a (substantial) premium based on the presence of an intermediary and/or the nature of the bilateral relationship between the counterparties (see Duffie, Gârleanu, and Pedersen (2005)). Futures contracts are likely to represent a much cleaner hedging tool. Futures contracts have no premium, low transaction costs, low margin requirements, and more transparent pricing than over-the-counter options. Hedging with stock index futures is certainly easy and cost-effective, but may provide an inadequate hedge if the returns profile of the stock exposure is significantly different to that of the index as a whole. As an alternative, one may consider hedging with single stock futures (SSF) contracts. Such a hedge is likely to work well if there is a traded future on the required stock. In cases for which the required SSF contract does not exist, the investor faces a choice: hedge with a stock index or cross-hedge using the futures contract of a closely related stock. Since cross-hedging efficiency is degraded by the inevitable 'basis risk', it is essential to select the appropriate futures contract carefully and to develop an effective cross-hedging model. To this end, the objective of this study is to evaluate the efficiency of cross hedging with the new SSF contracts introduced in the U.S. in November 2002. At the end of June 2006, 202 individual U.S. stocks had SSF contracts written on them. To cross hedge other stocks, we propose using a technique that matches the spot stock with one or more of the available SSF contracts in a manner designed to reduce the basis risk of cross hedging and to obtain the most efficient hedging portfolio. The benefits of hedging with futures have been well studied, and cross hedging with futures has been successfully used in various financial markets including commodity (Foster and Whiteman, 2002; Franken and Parcell, 2003), foreign exchange (Brooks and Chong, 2001) and equity markets. While there has been extensive testing of the various econometric models available to estimate the optimal hedge ratio, there has been little research on how to select optimally the hedging asset. If the futures contract for the specific individual stock does not exist, then the investor is forced to cross-hedge. The effectiveness of the hedge may depend more crucially on the selected futures contract than on the optimality of the estimated hedge ratio. If the hedging asset is chosen to maximize the correlation between the spot returns and futures returns, by definition, this will ensure that the basis risk from cross hedging is minimized (in-sample). We implement such a scheme in this paper, but as we argue below and show empirically, we may be able to reduce better the out-of-sample basis risk by selecting a futures contract using a measure other than the correlation of its returns with those of the spot asset. The hedging efficiency of conventional estimation models of the optimal hedge ratio depends
on the return covariance between the spot and hedging assets. As the estimated hedge ratio and resulting efficiency are contingent on the sample period and its length, there is no guarantee that an effective hedge will continue over a different time horizon. Unfortunately, there is no universally accepted objective decision criterion for the appropriate length of the sample period. As an alternative, one could consider the common fundamental factors that affect the price movement of the spot asset and the hedging asset. In the context of cross hedging, if two assets have similar fundamental factors that determine their subsequent price movements, then the resulting hedge can be expected to be relatively effective. We would argue that fundamental characteristics are, by their very nature, likely to vary much less from one sample to another than returns, and should therefore lead to more stable and more accurate hedging ratios. We propose a new hedging technique, based on matching the spot asset with the ideal hedging asset(s) using nonparametric sample matching techniques that control those fundamental factors as the matching characteristics. The resulting hedged portfolio should minimize the basis risk. We show that using matching techniques to construct the hedged portfolio can provide efficiency gains over a hedged portfolio constructed purely according to the correlation between the futures and spot returns. It may be problematic to estimate accurately correlation using a finite sample of historical returns data for the spot and futures assets. The noise inherent in these returns, and the resulting correlation estimates, means that it may not be desirable to select the hedging asset on the basis of the correlation. In contrast, if we are able to capture a measure of the "fundamental" value of the firm, it should by definition be more stable over time and therefore less prone to measurement error, enabling us to more reliably determine the appropriate futures contract. The literature on factors driving individual stock returns is vast. There are a number of different measures of firm fundamentals that could be employed, but many are based on quantities that are only observable on an annual or biennial basis (such as earnings or dividends), which would provide too few observations. Instead, our choice of factors (industry, beta, market capitalization, and price to book ratio) is in the same spirit as the factors proposed by Fama and French (1993). The Fama-French factors have become highly popular as risk attribution measures in the asset pricing literature, and have been the most successful in explaining the cross-sectional variation in returns. Our factors can also be motivated by classic papers such as Banz (1981), who find a relation between firm size and returns, and Rosenberg, Reid, and Lanstein (1985), who find a relation between the price / book ratio and returns. Our method is supported by recent evidence that individual stocks often move together, allowing one stock (or its associated single stock futures contract) to provide a natural hedge for another. For example, Gatev, Goetzmann, and Rouwnhorst (2005) investigate the following "pairs trading" strategy: (i) the investor first finds two stocks that have historically moved together; (ii) when their prices diverge the investor shorts the winner and buys the loser; (iii) eventually, the prices (hopefully) converge again, generating profits. Gatev, et al. show that this simple strategy produces significant positive riskadjusted returns.² Additional support for our methodology is provided by Tookes (2004). She shows in the context of earnings announcements, that returns in the stocks on non-announcing competitors have information content for announcing firms. For our empirical analysis, we construct four types of crosshedged portfolios that are hedged with: i) single SSF only, ii) single SSF and market index futures, iii) multiple SSF contracts, and iv) multiple SSF contracts and market index futures. Each futures contract is chosen according to three different characteristic sets. The first matching characteristic set consists of only historical return correlations between spot and potential futures implied in the conventional cross hedging model. The second set consists of possible fundamental factors (industry, beta, market capitalization, and price to book ratio) that influence the price movements of stocks. The last set includes both return correlations and fundamental factors. Finally, we repeat the same analysis with the additional restriction that the selected SSF contracts are from the same industry as the spot stock. To examine the hedging efficiency of each hedged portfolio, we consider the percentage reduction of the variance of the hedged portfolio relative to that of the unhedged portfolio. To compare the out-of-sample hedging efficiency of each model over time, we construct a hedged portfolio with a 1-day life and roll it over with fixed sized time windows. Overall, we find that the best hedging performance is achieved through a portfolio that is hedged with market index futures and a SSF matched by both historical return correlation and cross-sectional matching characteristics. We also find it preferable to retain the chosen SSF contracts for the whole out-of-sample period while re-estimating the optimal hedge ratio at each rolling window. The paper is organised as follows. The next section describes the SSF markets and provides an overview of existing research on SSFs. Section 3 outlines our methodology for estimating the hedge ratio and determining hedging efficiency. Section 4 outlines the various cross-hedging models based on different hedging strategies and explains the estimation procedure and rebalancing methods. Section 5 describes the data. Section 6 presents the estimation results and finally, Section 7 concludes. #### 2. THE SINGLE STOCK FUTURES MARKET U.S.-listed single stock futures became possible with the Commodity Futures Modernization Act of 2000. This act repealed the so-called Shad-Johnson Accord, which had banned SSF, in part because of regulatory concerns about the leverage effect of SSF and possible manipulation of the underlying spot stock price. They are regulated jointly by both the Commodity Futures Trading Commission (CFTC) and the Securities and Exchange Commission (SEC). This joint regulation regime has been heavily criticized by many as unworkable, including by Johnson (2005) – one of the authors of the Shad-Johnson accord. Knepper (2004) provides an opposing viewpoint in favor of the current regulatory regime. The approval of listing standards and margin requirements by the SEC and the authorization of trading rules by the CFTC paved the way for the November 8, 2002 launch of the first U.S.-based SSF markets: OneChicago and Nasdaq.LIFFE (NQLX). OneChicago is a joint venture of the Chicago Board Options Exchange, the Chicago Mercantile Exchange, and the Chicago Board of Trade.³ Soon after launch, OneChicago quickly became the dominant trading venue for SSF contracts in the US and is thus the focus of this study. NQLX ceased operations in December 2004. There are several possible reasons for the relative success of OneChicago compared with NQLX. One possibility is differences in market structure. OneChicago selected a lead market maker model, in which the market maker provides continuous two-sided quote prices and ensures liquidity. This market model contrasted with the combination of a multiple market maker system and a central order book adopted by the now defunct NQLX. The relative success of OneChicago may also be due to the choice of initial products listed on the two markets. Ang and Cheng (2005b) examine how OneChicago and NQLX selected their initial listed products. They obtain estimates of an underlying stock's SSF listing probability and show that this probability is a good predictor of post-listing success. There are many potential benefits of single stock futures. One benefit is that SSFs have lower margin requirements than equity. The Federal Reserve's Regulation T sets the standard initial and maintenance margin requirement of 20% for SSFs, both long and short positions. This is much lower than the 50% initial requirement for a long equity position and the 50% plus sale proceeds requirement for a short equity position. Long and short equity positions on margin also have a higher maintenance margin requirement of 30%. Another benefit is that SSFs enable easier short selling, with the ability to sell on a downtick and the elimination of the need to use a stock loan department. In order to reduce the risk of a short squeeze in SSFs, the CFTC introduced speculative position limit levels for SSFs based on the average daily trading volume of the underlying security. As well, lower maintenance margin requirements reduce the risk of a forced margin call and the forward looking nature of SSF contracts helps moderate the impact of short-term price movements in the underlying security. Other benefits of SSFs include their usage for spread trading and their ability to isolate a stock from an index. As well, SSFs can provide a cleaner, more efficient hedging tool than options. There is a well-defined no-arbitrage relation linking futures prices with the price of the underlying. This contrasts with option prices which depend critically on subjective assumptions about underlying price volatility. In addition to the US markets, single stock futures have recently been introduced in many exchanges around the world; including Hong Kong, London, Madrid, Warsaw, Helsinki, South Africa, Mexico and Bombay (see Lascelles (2002) for a survey of exchanges trading SSF contracts). Most of existing literature on SSF contracts has focused on the interaction between the SSF market and the underlying spot market. McKenzie, Brailford and Faff (2001) examine the impact of SSF listing on the liquidity of the spot stock market
in Australia. Chau, Holmes, and Paudyal (2005) investigate the impact of UK-listed single stock futures, known as Universal Stock Futures, on the volatility and level of feedback trading in the underlying market. In a similar vein, Hung, Lee, and So (2003) use a GARCH-based approach to examine whether the introduction of Universal Stock Futures contracts impacts domestic underlying stock markets. Ang and Cheng (2005a) argue that the introduction of SSF contracts has a stabilizing effect on the market and thereby improves market efficiency. Generally speaking, most market participants were disappointed with initial trading volumes in SSF. Anecdotal evidence suggests that many of the early participants in the single stock futures markets were market makers in *other* electronic markets who used the SSFs to hedge / offset their short-term positions in their markets of responsibility (e.g. options, equity). Many "regular" investors have stayed away because of confusion about these new products. Investor confusion is clearly evident in a study by Jones and Brooks (2005) that finds evidence of significant pricing errors in SSFs. They find large differences in implied interest rates across contracts, negative implied interest rates, and incorrect treatment of dividends. Simons (2002) argues that another source of investor confusion has been the complex (and inconsistent?) tax treatment of SSFs. Finally, another reason why investors may have stayed away is because margin requirements for SSF are much higher than comparable requirements for regular futures contracts. Dutt and Wein (2003) argue that the current margin requirements for SSF should be replaced with a portfolio risk adjusted requirement. Recently, trading volumes and open interest in SSF on OneChicago have begun to increase – trading volume in 2005 was 188% higher than in 2004. Rising interest rates have increased the attractiveness of SSF contracts as a financing play for regular long-only equity investors. As well, the introduction of a discounted trading fee program for OneChicago member firms may have increased the attractiveness of trading SSFs (see Jones (2006)). The future of SSF markets is still very much up in the air. Many of the big institutional players (investment banks, hedge funds) make their money in rival markets (e.g. options). It is possible that these players may have avoided trading on OneChicago in order to preserve their lucrative margins in other markets. To succeed, single stock futures need to provide solutions not available in other financial products. In this vein, the remainder of the paper will investigate the feasibility of using single stock futures to cross hedge stocks that do not have traded options. #### 3. METHODOLOGY #### 3.1 Basis Risk Minimizing basis risk is the most important criterion for improving the cross-hedging efficiency of hedging with futures contracts. Basis risk, defined as the difference in price between the spot and futures at maturity, arises because the quality and/or the quantity of the underlying spot assets usually differ from those of the futures contracts. The payoff of a hedged portfolio with a hedge ratio of one can be written $$P_{S,T} + P_{F,T-1} - P_{F,T} \tag{1}$$ where P_S indicates the spot price, and P_F indicates the futures price. At time T-1, the hedge is put in place, and at time T, the hedging position is closed. When we consider cross hedging, equation (1) can be rewritten $$P_{FT,1} + (P_{ST}^* - P_{FT}) + (P_{ST} - P_{ST}^*) \tag{2}$$ where the superscript * indicates that the underlying asset of the hedging futures is different from the spot asset exposed. Equation (2) illustrates that the basis from cross hedging consists of two components. The first component, $P_{S,T}^* - P_{F,T}^*$ represents the basis risk from the difference in price at clearing time between the futures and the spot asset, given that the spot is the same as the underlying asset of the futures contract. The second component, $P_{S,T} - P_{S,T}^*$ captures the difference between the spot and the underlying asset of the futures contract. Since the first component of the basis risk cannot be controlled, the main concern in cross hedging is the minimization of the second component of the basis risk. That means that we have to select the 'optimal futures' whose underlying asset has the most similar price movement to that of the spot asset. #### 3.2 Optimal Hedge Ratio When the hedge ratio is defined as the ratio of the futures exposure to the spot exposure, the naive hedge ratio of one is only optimal when the spot and futures returns are perfectly correlated and constant over time. Clearly, this is not supported empirically. The key, therefore, is to estimate the 'optimal' hedge ratio. As Lien and Tse (2002) show, we can categorize the models for estimating the optimal hedge ratio by the purpose of hedging, by the asset manager's utility function, and by the assumptions about the distribution of the futures and spot returns. #### The OLS Hedge Ratio The optimal hedge ratio that minimizes the variance of the payoff of the hedged portfolio is analytically the same as the slope coefficient of an OLS regression of the spot returns $(r_{S,i})$ on the futures returns $(r_{E,i})$. Thus, the optimal hedge ratio (HR_{OLS}) for each of the j futures contracts is found by estimating: $$r_{s,t} = \alpha + \sum_{i} HR_{ots}^{i} \cdot r_{F,t}^{i} + \varepsilon_{t}$$ (3) where α is a constant and ε , is a white noise term. The regression R^2 gives the in-sample hedging efficiency. Notice that the error term of (3) represents the sum of the basis risk components of (2). Thus, minimizing the basis risk of (2) is equivalent to minimizing the variance of the error term of (3) (i.e., maximizing its R^2). If the underlying of the futures is exactly the same as the spot asset, then the correlation is likely to be close to unity. In this case, if the correlation is also constant over time and the amount of the spot asset is deterministic, then the OLS model will always produce efficient hedges. The extent to which reality deviates from these ideal conditions dictates how well the OLS model will perform in practice. #### Other Approaches to Estimating the Hedge Ratio An alternative approach to estimate the optimal hedge ratio is based on maximizing an expected utility function which incorporates the mean-variance of the hedged portfolio payoff.⁶ This approach implies that the optimal hedge ratio sets the hedger's subjective marginal substitution ratio between risk and returns equal to that of the objective hedged portfolio. Another approach to estimate the optimal hedge ratio is to use econometric models, such as the GARCH, which capture the time varying second moment of returns distributions. These models can be used to estimate a dynamic optimal hedge ratio that allows for time variation in the variance of future returns and in the covariance between spot and futures returns. For example, Baillie and Myers (1991) apply the bivariate GARCH model to commodity futures market data, and argue that a time-invariant hedge ratio is inappropriate and that a GARCH model performs better than the regression model, especially out-of-sample. Hedge ratio estimation based on variants on the GARCH model framework are proposed by Kroner and Sultan (1993), Brooks and Chong (2001), Brooks, Henry and Persand (2002), Poomimars, Cadle and Thebald (2003), and others. All of these models, including the OLS hedge ratio, assume either that the best futures asset is optimally given to minimize the second component of equation (2) for cross hedging or that the hedging futures' underlying asset exists in the spot market. To the best of our knowledge, there is no existing literature which provides a theoretical method to minimize the second component of equation (2) or examines its effect on basis risk and hedging efficiency. We develop a hedging model that reduces basis risk by selecting an optimal hedging futures asset as well as estimating the optimal hedge ratio. We adopt the variance minimizing hedge ratio estimated using OLS because a comparison of the efficiency of the hedge ratio is not the main focus of this paper. Empirically, Brooks *et al.* (2002), and others, have shown that there is often little difference in out-of-sample hedging efficiency between hedge ratios estimated using OLS and with other more complex models. Moreover, in practice, the OLS hedge ratio is widely used by market players thanks to its simplicity of understanding and estimation. #### 3.3 Hedging Efficiency In the futures literature, the most commonly measure used to gauge hedging efficiency is related to the variance of the payoff of the hedged portfolio – either the level of the variance or the reduction ratio to that of an unhedged portfolio. This means that the smaller the variance of the hedged portfolio, the larger the probability that it has a lower basis risk. It is worth noting that the hedge ratio from a regression model analytically guarantees the minimum variance in-sample provided that the hedging futures series employed has the highest correlation with the spot asset during the in-sample period. The payoff (π) of a hedged portfolio at time t is defined as $$\pi_{t} = r_{S,t} - \sum_{j} HR_{OIS}^{j} \cdot r_{F,t}^{j} .$$ For each spot stock, we compute the percentage reduction in variance (Var) of the payoff of the hedged portfolio ("hedge") against that of the corresponding unhedged portfolio ("no hedge"), as: $$\left(1 - \frac{\text{Var}(\pi_{\text{hedge}})}{\text{Var}(\pi_{\text{no hedge}})}\right) \times 100.$$ In unreported results, we also considered measuring hedging efficiency with the mean of the negative payoffs of the hedged portfolio. Qualitatively similar results were obtained.⁷ #### 4. THE CROSS HEDGING MODEL It is common to choose the futures asset for cross hedging based on only its historical return correlation,
ρ , since the highest historical return correlation ensures the highest hedging efficiency (i.e. the minimum variance of the hedged portfolio payoff) during the *insample* period. However, as discussed above, this may not provide optimal out-of-sample performance. Here, we consider hedging from another point of view. If the prices of two assets are influenced by similar fundamental factors, then clearly these two assets should have similar expected price movements. Thus, we could select our hedging asset based on the extent to which its price movements share the same common fundamental factors as the spot price. Our hope is that this approach will lead to better results since fundamental factors are likely to be less noisy and more stable through time than return correlations. In the following subsections, we describe various techniques designed to select a futures asset that has the closest matching characteristics to the spot asset we are attempting to hedge. #### 4.1 Matching Characteristics We construct three sets of matching characteristics (X). The first set consists of only the historical return correlation. The second consists of only the fundamental factors, which are capital asset pricing model (CAPM) beta, market capitalization and the price to book ratio. The final set consists of both the correlation and the fundamental factors. For multiple matching characteristics, we measure the distance between spot and hedging futures, in terms of matching characteristics, using the Mahalanobis metric: $$||X_s - X_F|| = (X_s - X_F)' \Lambda^{-1} (X_s - X_F)$$ where $\Lambda = [(N_S - 1) \Lambda_S + (N_F - 1) \Lambda_F] / (N_S + N_F - 2) N_D$ denotes the sample size, and ΛD denotes the sample covariance for D = S, F. For each spot asset, we select as the corresponding hedging futures contract(s), the contract(s) which minimize(s) this distance metric over the set of matching characteristics. When the matching characteristic is correlation, $X_S = 1$ and X_F equals the correlation between the spot asset and futures contract. #### 4.2 Industry Classification It is likely that, all other things being equal, firms within the same industry will have stock price movements that are more correlated than they are with those in other industries. This suggests that the hedger may primarily seek a hedging SSF that is in the same industry sector as the spot asset to minimize the industry effect. Hence, Insurance and Risk Management, vol. 74(4), January 2007 we examine whether classification of futures by industry can help to improve cross-hedging efficiency. The SSF contracts and spot stocks are classified according to their FTSE level 3 economic / industrial sector, and then spot stocks are matched with SSF contracts within the same industrial classification. We use the lowest level of FTSE industry classification to increase the likelihood that there exists a SSF in the same industry as each spot stock. When no SSF contract is available in the same industrial sector as the spot stock, we select a SSF in the most similar industry. #### 4.3 Hedging with multiple matched SSF contracts In the context of currency futures, DeMaskey (1997) shows that hedging with multiple futures contracts performs better than hedging with a single futures contract. Furthermore, he finds that adding more than three futures is unlikely to improve performance further. In light of these results, it is reasonable to suppose that using multiple SSF contracts to hedge could result in better hedging efficiency relative to that of using a single SSF. We explore this possibility by using up to three SSF contracts of "nearby" stocks to hedge. It is worth noting that OneChicago has attempted to introduce several mini / narrow-based index SSF contracts written on a small basket of underlying stocks. OneChicago has struggled to find a winning combination of stocks to include in these baskets. Their first attempt, the Dow Jones MicroSector Index futures ceased trading in March 2005 after only single digit lots traded. OneChicago has recently introduced narrow-based indexes on five baskets of Canadian stocks. These have fared slightly better, but have also struggled to attract trading volume. #### 4.4 Hedging with SSF contracts and Market Index Futures Hedging with market index futures is the most prevalent hedging tool for spot stocks having no derivatives, since it allows for a diversified portfolio to eliminate market risk with low trading costs. However, as index futures can only eliminate market risk, the residual basis risk can be substantial. In other words, index futures cannot remove firm specific risk. Thus, if we hedge the spot stocks' exposures with market index futures in addition to the matched individual stock futures, the hedging efficiency may improve because this approach may mitigate both the market risk and the residual firm specific risk. Thus, to summarize, we have with four types of cross-hedged models, hedged with: i) single matched futures only; ii) single matched futures and market index futures; iii) multiple futures; and iv) multiple futures and market index futures. The hedging SSF contracts are matched by: i) return correlation only; ii) cross-sectional fundamental factors only; and iii) both of them. All models are examined both with and without industry matching. #### 4.5 Estimation and Rebalancing To determine the ex-ante hedging efficiency during the out-of-sample period, rolling windows of fixed length (1-day), corresponding to the supposed portfolio life, are employed until data are exhausted. The issue of the lengths of the in-sample and out-of-sample periods is addressed later. Hedging efficiency is measured in terms of variance reduction, assuming that each portfolio consists of one spot stock. Then, the hedging efficiency is estimated over the sample of spot stocks. Assuming a short hedge and using the minimum-variance hedging ratios estimated by OLS, we consider three rebalancing procedures for hedging efficiency: - Low effort and transaction costs: Retain a single optimally chosen hedging SSF contract for a given spot stock position and use the same OLS hedge ratio over all rolling windows during the out-of-sample period. That is, there is a one-time matching and a one-time estimation of the hedge ratio at the start of the out-of-sample period. - Medium effort and transaction costs: Fix throughout the optimally chosen SSF contracts for a given stock, but re-estimate the OLS hedge ratio at every rolling window during the out-of-sample period as new price information becomes available. - High effort and transaction costs: Re-select, at each rolling window, the hedging SSF contracts for each spot stock according to the new information, and re-estimate the hedge ratios. These three procedures impose different computation and transaction costs on the hedger and allow us to test whether increased hedging efficiency can be obtained by increasing the frequency of rebalancing. Note that the second and third methods both allow for the possibility of time-variation in the correlation between SSF and spot asset returns. #### 5. DATA We collect daily settlement prices, daily trade price ranges (open, close, high, low), trading volume, and open interest of each SSF contract listed on OneChicago from its website (www.onechicago.com) for the period September 2, 2003 to March 31, 2005 (396 trading days). To ensure sufficient observations to estimate the return correlations, we restrict our sample to SSF contracts written on US-based stocks that had a deliverable SSF contract written on them prior to September 2, 2003. Our final sample consists of SSF contracts written on 86 underlying stocks. Typically, each stock has four SSF contracts written on it. Until July 19, 2004, the contracts followed the quarterly cycle of March, June, September and December. After this date, the contract expiration schedule was changed to include two front months and then two quarterly months listed, for a total of four expirations per product class. Thus, after the change, the expiries for the longest term contracts range from six to eight months, depending on the time of the year. Bertus, Chu, and Swidler (2005) examine the change in expiration cycles and argue that there is no economic benefit to listing serial expiration contracts. For hedging purposes, we always focus on the nearby quarterly contract, rather than the nearby serial contract, since this contract is normally the most liquid. We make standard adjustments for dividends and major corporate events, and exclude non-standard listings. Table 1 lists the final sample of SSF contracts and provides the average daily trading volume and average open interest of the nearby quarterly contract. While clearly some contracts are less frequently traded than others, we note that the arbitrage relation between the futures and underlying stock ensures that all contracts have intraday bid-ask spreads which remain very narrow. At expiration, open contracts are settled by physical delivery. # TABLE I FINAL SAMPLE OF SINGLE STOCK FUTURES (SSF) CONTRACTS The table lists our final sample of SSF contracts written on 86 underlying stocks, listed by abbreviated firm name and ticker symbol (in parenthesis). The table also reports the average daily open interest and the average daily volume in contracts (each contract represents 100 shares of the underlying security) of the nearest contract on a quarterly expiration cycle. Results are based on the period September 2, 2003 to March 31, 2005. | Underlying Stock | Open
Interest | Volume | |------------------------------|------------------|--------| | Alcoa Inc. (AA) | 806 | 27 | | American Inter. Group (AIG) | 1,877 | 33 | | Altera Corporation (ALTR) | 1,260 | 47 | | Applied Materials (AMAT) | 1,703 | 77 | | Amgen Inc. (AMGN) | 1,755 | 71 | | Amazon.com, Inc. (AMZN) | 224 | 22 | | American Express (AXP) | 2,333 | 58 | | Boeing Co. (BA) | 1,095 | 23 |
 Bank of America Corp. (BAC) | 2,369 | 87 | | Bed Bath & Beyond (BBBY) | 1,251 | 48 | | Best Buy Co., Inc. (BBY) | 284 | 10 | | Biogen Idec Inc (BIIB) | 82 | 12 | | Bristol-Myers Squibb (BMY) | 1,240 | 35 | | Brocade Comm. Sys. (BRCD) | 258 | 15 | | Broadcom Corp. (BRCM) | 247 | 33 | | Citigroup, Inc. (C) | 1,663 | 50 | | Caterpillar, Inc. (CAT) | 388 | 21 | | Cephalon, Inc. (CEPH) | 127 | 14 | | Comcast Corp. (CMCS) | 2,295 | 52 | | Comverse Tech., Inc. (CMVT) | 1,058 | 43 | | Cisco Systems, Inc. (CSCO) | 1,667 | 57 | | ChevronTexaco Corp. (CVX) | 1,403 | 40 | | E.I. du Pont de Nemours (DD) | 2,470 | 67 | | Dell Inc. (DELL) | 2,984 | 94 | | Walt Disney Co. (DIS) | 1,707 | 54 | | Dow Chemical Co. (DOW) | 992 | 38 | | eBay Inc. (EBAY) | 578 | 51 | | Eastman Kodak Co. (EK) | 1,286 | 73 | | Emulex Corp. (ELX) | 1,225 | 30 | | Ford Motor Co. (F) | 48 | 3 | | General Electric Co. (GE) | 2,909 | 99 | # TABLE I (suite) FINAL SAMPLE OF SINGLE STOCK FUTURES (SSF) CONTRACTS | Underlying Stock | Open
Interest | Volume | |------------------------------|------------------|--------| | Genzyme General (GENZ) | 317 | 12 | | General Motors Corp. (GM) | 1,466 | 71 | | Goldman Sachs (GS) | 558 | 23 | | Halliburton Co. (HAL) | 2,736 | 73 | | Home Depot, Inc. (The) (HD) | 567 | 18 | | Honeywell Inter. (HON) | 2,972 | 76 | | Hewlett-Packard Co. (HPQ) | 2,012 | 57 | | IBM Corp. (IBM) | 1,897 | 54 | | Intel Corp. (INTC) | 1,293 | 58 | | International Paper Co. (IP) | 2,020 | 44 | | Johnson & Johnson (JNJ) | 2,250 | 59 | | J.P. Morgan Chase (JPM) | 2,414 | 66 | | KLA-Tencor Corp. (KLAC) | 586 | 36 | | Coca-Cola Co. (KO) | 1,570 | 72 | | Linear Technology (LLTC) | 634 | 33 | | McDonald's Corp. (MCD) | 3,736 | 99 | | Merrill Lynch & Co. (MER) | 833 | 25 | | 3M (MMM) | 675 | 24 | | Altria Group (MO) | 1,808 | 78 | | Motorola, Inc. (MOT) | 124 | 17 | | Merck & Co., Inc. (MRK) | 643 | 20 | | Microsoft Corp. (MSFT) | 4,792 | 153 | | Micron Tech., Inc. (MU) | 164 | 13 | | Morgan Stanley (MWD) | 1,233 | 25 | | Maxim Integ. Prod. (MXIM) | 837 | 37 | | Newmont Mining (NEM) | 165 | 15 | | Northrop Grumman (NOC) | 1,253 | 42 | | NVIDIA Corp. (NVDA) | 991 | 41 | | Novellus Systems (NVLS) | 711 | 28 | | Nextel Comm., Inc. (NXTL) | 1,652 | 66 | | Oracle Corp. (ORCL) | 142 | 8 | | Pepsico, Inc. (PEP) | 779 | 31 | | Pfizer, Inc. (PFE) | 2,610 | 80 | | Procter & Gamble Co. (PG) | 1,461 | 42 | | Qualcomm Inc. (QCOM) | 1,002 | 52 | | QLogic Corp. (QLGC) | 604 | 24 | | SBC Communications (SBC) | 2,264 | 84 | | Starbucks Corp. (SBUX) | 1,699 | 53 | TABLE I (suite) FINAL SAMPLE OF SINGLE STOCK FUTURES (SSF) CONTRACTS | Underlying Stock | Open
Interest | Volume | |-----------------------------|------------------|--------| | Siebel Systems, Inc. (SEBL) | 59 | 5 | | Schlumberger N.V. (SLB) | 2,003 | 70 | | SanDisk Corp. (SNDK) | 193 | 23 | | Sun Microsystems (SUNW) | 870 | 44 | | Symantec Corp. (SYMC) | 637 | 34 | | AT&T Corp. (T) | 43 | 2 | | Time Warner Inc. (TWX) | 60 | 4 | | Texas Instruments (TXN) | 695 | 33 | | Tyco International (TYC) | 1,503 | 49 | | United Technologies (UTX) | 673 | 32 | | Veritas Software (VRTS) | 120 | 9 | | Verizon Comm. (VZ) | 2,563 | 84 | | Wells Fargo & Co. (WFC) | 2,721 | 69 | | Wal-Mart Stores (WMT) | 1,467 | 38 | | Xilinx, Inc. (XLNX) | 1,189 | 45 | | Exxon Mobil Corp. (XOM) | 2,695 | 68 | | Yahoo! Inc. (YHOO) | 362 | 30 | The criteria for the spot stocks included in our sample are that they must: i) not have corresponding derivatives - either SSF or options; 10 ii) be US-based firms; iii) be listed on a U.S.-based stock exchange before September 2, 2003; and iv) have matching characteristic data available. From the set of stocks satisfying these four criteria, we select the largest 350 stocks based on market capitalization on December 31, 2003. For the spot stocks and the firms underlying the SSF contracts, we collect matching characteristics (industry, beta, market capitalization, and price to book ratio) from Datastream. Table 2 provides summary statistics of the sample. Notice that the firms underlying the SSF contracts are much larger, in general, than the sample of spot stocks. Our restriction that spot stocks have no exchange-traded derivatives written on them results in a sample of firms that is smaller and younger. To the extent that these firms are more difficult to match, our results will provide a conservative estimate of the true potential effectiveness of our hedging methods. # TABLE 2 MATCHING CHARACTERISTICS OF THE FINAL SAMPLE OF SPOT STOCKS AND SINGLE STOCK FUTURES (SSF) CONTRACTS The matching characteristics (market capitalization, CAPM Beta, and the price to book ratio) are obtained from Datastream on December 31, 2003. | | | Spot stocks to be hedged | Underlying stocks
of single stock
futures contracts | |-----------------------------|------|--------------------------|---| | Number of firm | ıs | 350 | 86 | | Market | Max | 6,698 | 311,755 | | Capitalization (millions of | Min | 86 | 1,495 | | dollars) | Mean | 959 | 64,461 | | CAPM Beta | Max | 2.887 | 2.893 | | | Min | 0.004 | -0.213 | | | Mean | 0.509 | 1.333 | | Price / Book | Max | 68.05 | 18.73 | | | Min | -32.42 | -61.85 | | | Mean | 2.93 | 2.82 | #### 6. RESULTS First, we examine the issue of which rebalancing procedure shows the best hedging efficiency during the out-of-sample period. In Figure 1, the average variance reductions from different rebalancing methods are depicted over different lengths of out-of-sample period. Interestingly, our expectation that the most complicated rebalancing method would show the best performance is not supported. All three rebalancing methods are based on a hedge using a sole SSF matched by historical correlation only. Even though rebalancing according to the time varying hedge ratio performs better than the constant hedge ratio over the out-of-sample period, changing the SSF used for hedging according to the updated historical return correlation does not guarantee a better performance. #### FIGURE I AVERAGE VARIANCE REDUCTION: COMPARISON OF REBALANCING PROCEDURES Average reduction in variance of returns of 350 spot stocks hedged with a SSF against the unhedged case. Out-of-sample periods are presented on the x-axis as a portion of the total sample period with a fixed end point and a variable starting point. Key: I. Keep both SSF and hedge ratio fixed during the whole out-of-sample period. 2. Keep the matched SSF, but re-estimate the hedge ratio and rebalance the portfolio every day during the out-of-sample period. 3. Re-match the SSF, re-estimate the hedge ratio and rebalance the portfolio every day during the out-of-sample period. We have tested a total of 33 cases of hedging models – for example, hedging with multiple SSF contracts, matching SSF contracts with different matching characteristic sets, adding industrial classifications, and with market index futures. Even though Figure 1 is based on the simplest hedging model, for most of the hedging models, the second rebalancing procedure – re-estimating the hedge ratio and not re-selecting the SSF – is still preferred. Hence, the following sections focus on the results obtained from this second balancing method (that is, updating the hedge ratio but using the same SSF for a given stock for the whole out of sample period). When conducting an out-of-sample evaluation of hedging efficiency, it is of interest to examine the sensitivity of the results to the portion of the total sample that is retained as the out-of-sample period. To this end, we conduct all estimation procedures for out-ofsample periods ranging from 15% to 50% of the total sample period. Based on the results presented in Figure 1, we choose 32.5% of the total sample (128 days) for the out-of-sample period, which also ties in with the loose "two-thirds, one-third" rule commonly used in empirical analysis. Matching characteristics: In Figure 2, we examine the effect of three different matching characteristics on the choice of optimal hedging asset. The first one consists of the historical return correlation only while the second consists of three cross-sectional matching characteristics (CAPM beta, market capitalization and price to book ratio). Both the historical correlation and the cross-sectional matching characteristics are combined in the last set. Note that in this cumulative probability distribution diagram we prefer the line to be further to the lower right. Here, we find that historical correlation is very important. For all three hedging models, the variance of the hedged portfolio returns is reduced for about 75% of the spot stocks. #### FIGURE 2 VARIANCE REDUCTION: COMPARISON OF MATCHING CHARACTERISTICS The figure shows the cumulative probability distribution of the reduction in variance of returns of 350 spot stocks hedged with a SSF against the unhedged case. Key: I. Hedge with a SSF matched by only a historical return correlation. 2. Hedge with a SSF matched by only cross-sectional matching characteristics. 3. Hedge with a SSF matched by both a return correlation and cross-sectional matching characteristics. Multiple SSF contracts: If there are benefits from diversification, hedging with multiple SSF contracts may improve hedging efficiency. In Figure 3, the variance reduction from hedging with multiple SSF contracts is compared with that of hedging with only one SSF for each stock. For hedging with three SSF contracts, half of the spot stocks show at least a 15% variance reduction and 297 stocks (80%) show a better performance than that of hedging with a single SSF. Table 3 summarizes the average variance reduction across the sample of 350 stocks. We find that the best approach is to use three SSF contracts selected on the basis of both return correlation and firm characteristics, to adjust the hedge ratio throughout the sample, and to fix the SSF's employed (rebalancing method 2). In a few cases, the median is
much larger the mean, indicating that there are a few large negative outliers. Such situations arise when the spot stock's price collapsed or rose spectacularly, but the hedging futures contract's price did not; or vice versa. For instance, during the out-of-sample period, three of the SSF contracts had very large price falls: SanDisk fell about 30% on October 14, 2004; AMD fell about 25% on November 1, 2004; and Biogen Idec fell almost 40% on February 28, 2005. Such events are quite rare, but are bound to happen in a sample of this size. # FIGURE 3 AVERAGE VARIANCE REDUCTION AND THE NUMBER OF SSF CONTRACTS Cumulative probability distribution of reduction in variance of returns of 350 spot stocks hedged with SSF against the unhedged case. Each SSF is matched with both historical correlation and cross-sectional matching characteristics. ### TABLE 3 - VARIANCE REDUCTION OF HEDGING MODELS WITH USING MATCHED SINGLE STOCK FUTURES (SSF) ONLY The cross-sectional matching characteristics used are beta, market capitalization, and price to book ratio. The three rebalancing methods are: I. Keep both SSF and hedge ratio fixed during the whole out-of-sample period. 2. Keep the matched SSF, but re-estimate the hedge ratio and rebalance the portfolio every day during the out-of-sample period. 3. Re-match the SSF, re-estimate the hedge ratio and rebalance the portfolio every day during the out-of-sample period. | | | Rebalancing method I | | | | | alancing n | nethod | 2 | Rebalancing method 3 | | | | |-------|--|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------| | Model | | I SSF
in any
industry | I SSF
in same
industry | 2
SSFs | 3
SSFs | I SSF
in any
industry | I SSF
in same
industry | 2
SSFs | 3
SSFs | I SSF
in any
industry | I SSF
in same
industry | 2
SSFs | 3
SSFs | | Α | Matchir | ng with pri | ce correlat | tion only | y | | 2000 | vo residen | | | 75.55 | | | | | Mean
Median
Max
Min | 8.88
9.72
40.35
-73.72 | 8.79
9.38
38.98
-73.93 | 12.51
13.43
45.47
-55.65 | 13.70
14.52
47.35
-55.43 | 9.46
9.74
41.79
-76.82 | 9.24
9.10
40.86
-35.27 | 13.06
13.50
47.47
-61.81 | 14.21
14.86
49.30
-62.19 | 8.51
8.55
41.79
-76.82 | 8.75
8.56
40.05
-27.41 | 12.35
13.00
49.22
-65.40 | 13.73
14.10
51.38
-62.94 | | В | Matching with cross-sectional characteristics only | | | | | | | | | | | | | | | Mean
Median
Max
Min | 2.11
1.61
20.25
-28.95 | 8.81
8.02
38.98
-11.86 | 4.99
4.84
25.54
-20.61 | 8.35
8.44
30.37
-39.52 | 1.98
1.56
19.95
-27.16 | 8.91
8.07
40.86
-21.85 | 4.85
4.45
24.30
-21.17 | 8.66
8.05
29.35
-33.93 | | | | | | С | Matchi | ng with bot | th correlat | ion and | cross-se | ectional ch | aracterist | ics | | | | | | | | Mean
Median
Max
Min | 8.30
9.59
38.98
-73.72 | 9.14
9.64
38.98
-34.76 | 12.39
13.47
45.47
-65.16 | 14.14
14.67
47.35
-58.24 | 9.00
9.27
40.86
-76.82 | 9.33
9.38
40.86
-22.81 | 12.85
13.58
47.47
-69.58 | 14.48
14.61
49.30
-64.73 | 7.76
7.74
42.32
-76.82 | 7.96
7.88
39.20
-66.70 | 12.11
12.01
47.47
-68.82 | 13.74
14.23
49.30
-58.02 | Industry classification: Table 3 also examines whether matching SSF contracts within the same industrial sectors as the spot stocks improves hedging efficiency. Classifying by industry improves the results when only one SSF is used for each spot stock hedged, but this improvement is less than that of moving from one to three SSF contracts without concern for industry. The problem is that for the 86 SSFs available, some industrial sectors contain no SSFs or very few. Comparing portfolios hedged with industrial classification but limited to sole SSF hedging and the portfolio hedged without industrial classification but unlimited as to the number of SSFs, the latter shows better hedging efficiency in this context. Market index futures: While hedging with SSF may reduce firm specific risk because we hedge with a SSF similar to the spot asset, market risk will remain. Hence, it is possible that hedging efficiency can be further improved by hedging with market index futures. From Figure 4, it can be seen that controlling for market risk as well does indeed improve the variance reduction. Adding market index futures to the hedging model with three SSF, leads to an improvement in variance reduction for half of the spot stocks from at least 14% to at least 21%. Figure 4 illustrates that hedging with only market index futures shows a better performance than hedging with both market index futures and three SSF contracts. Since this may arise from noise caused by the use of so many hedging contracts, we examine the hedging model with market index futures plus a single SSF matched by return correlation, firm characteristics and industry sector. Hedging with index futures and one SSF shows a slightly better performance than hedging with market index futures alone (p-value = 0.07, one-sided paired t-test). ## FIGURE 4 AVERAGE VARIANCE REDUCTION: HEDGING WITH AND WITHOUT MARKET INDEX FUTURES Average of reduction in variance of returns for 350 spot stocks hedged with SSF against the unhedged case. Key: I. Hedge with three SSF matched by both a historical return correlation and cross-sectional matching characteristics. 2. Hedge with market index futures and a SSF matched by both a historical return correlation and cross-sectional matching characteristics with industrial classification. 3. Hedge with market index futures only. 4. Hedge with market index futures and three SSF matched by both a historical return correlation and cross-sectional matching characteristics. Table 4 provides the average reduction in variance across the sample of stocks for the different hedging models. This table corresponds to Table 3, except that the hedging is now done with market index futures as well as the SSF contracts. We find that hedging with market index futures is effective, but that improvements can be made by using both index futures and one SSF contract from the same industry as the spot stock. ### TABLE 4 – VARIANCE REDUCTION FOR HEDGING MODELS WITH SINGLE STOCK FUTURES (SSF) AND MARKET INDEX FUTURES The cross-sectional matching characteristics used are beta, market capitalization, and price to book ratio. The three rebalancing methods are: I. Keep both SSF and hedge ratio fixed during the whole out-of-sample period. 2. Keep the matched SSF, but re-estimate the hedge ratio and rebalance the portfolio every day during the out-of-sample period. 3. Re-match the SSF, re-estimate the hedge ratio and rebalance the portfolio every day during the out-of-sample period. | | | Reb | Reb | alancing n | nethod | 2 | Rebalancing method 3 | | | | | | | |-------|--|-----------------------------|------------------------------|------------|-----------|-----------------------------|------------------------------|-----------|-----------|-----------------------------|------------------------------|-----------|-----------| | Model | | I SSF
in any
industry | I SSF
in same
industry | 2
SSFs | 3
SSFs | I SSF
in any
industry | I SSF
in same
industry | 2
SSFs | 3
SSFs | I SSF
in any
industry | I SSF
in same
industry | 2
SSFs | 3
SSFs | | A' | Market index futures +SSF: matching with price correlation only | | | | | | | | | | | | | | | Mean | 19.07 | 19.95 | 18.56 | 17.89 | 20.19 | 20.72 | 19.96 | 19.42 | 19.61 | 20.40 | 19.10 | 18.46 | | | Median | 20.46 | 20.50 | 19.77 | 18.53 | 20.74 | 20.68 | 20.62 | 19.90 | 20.26 | 20.25 | 19.21 | 19.11 | | | Max | 53.64 | 53.64 | 52.29 | 52.00 | 54.39 | 54.39 | 53.58 | 53.38 | 54.05 | 54.05 | 56.28 | 55.86 | | | Min | -57.42 | -17.29 | -54.78 | -54.82 | -66.99 | -15.32 | -66.88 | -68.17 | -66.99 | -15.32 | -69.94 | -68.94 | | B' | Market index futures + SSF: matching with cross-sectional characteristics only | | | | | | | | | | | | | | | Mean | 19.61 | 20.30 | 19.35 | 18.93 | 20.22 | 20.74 | 19.96 | 19.60 | | 3 | | | | | Median | 19.83 | 20.37 | 19.62 | 19.12 | 20.19 | 20.61 | 20.00 | 19.55 | - 1 | | | | | | Max | 52.51 | 54.30 | 52.44 | 52.80 | 52.83 | 54.12 | 52.56 | 52.80 | | | | | | | Min | -6.21 | -5.14 | -9.21 | -25.82 | -5.05 | -4.90 | -5.95 | -17.95 | | | | | ### TABLE 4 – VARIANCE REDUCTION FOR HEDGING MODELS WITH SINGLE STOCK FUTURES (SSF) AND MARKET INDEX FUTURES (continued) | | Rebalancing method I | | | | | Reb | alancing r | nethod | 2 | Rebalancing method 3 | | | | | |-------|--|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--| | Model | | I SSF
in any
industry | I SSF
in same
industry | 2
SSFs | 3
SSFs | I SSF
in any
industry | I SSF
in same
industry | 2
SSFs | 3
SSFs | I SSF
in any
industry | I SSF
in same
industry | 2
SSFs | 3
SSFs | | | C' | Market
index futures + SSF: matching with both correlation and cross-sectional characteristics | | | | | | | | | | | | | | | | Mean
Median
Max
Min | 19.50
20.34
54.30
-57.42 | 20.24
20.37
54.30
-17.29 | 19.13
20.15
52.14
-57.54 | 18.63
19.27
53.03
-55.41 | 20.57
20.71
54.12
-66.99 | 20.93
20.78
54.12
-15.32 | 20.26
20.76
52.85
-66.94 | 19.84
20.08
53.86
-68.40 | 19.81
20.09
53.86
-66.99 | 20.53
20.48
51.69
-15.32 | 19.48
19.64
54.07
-67.89 | 18.92
18.77
53.97
-63.57 | | | α | Market | index futu | res only | | | | | | | | | | | | | | Mean
Median
Max
Min | | 20.07
20.25
52.98
-6.19 | | | | 20.59
20.74
53.44
-5.36 | | | | 8 10.57
10.57 | | | | Optimal hedging model: To summarize, the best hedging performance is achieved through a portfolio that is hedged with market index futures and a SSF matched both by historical return correlation and by cross-sectional matching characteristics, keeping the chosen SSF contract for the whole out-of-sample period and using the optimal hedge ratio re-estimated for each rolling window. For the best performing model, half of the spot stocks show at least a 21% reduction in variance of returns and the best hedging model reduces the hedged portfolio variance for 94% of spot stocks relative to no hedging. For interest, in terms of variance reduction, Commercial Federal Corp, is the stock whose return movements can be hedged most effectively – the variance of payoff is reduced 54%. Its matched SSF is Wells Fargo & Co, which is in the same 'Financials' sector. #### 7. CONCLUSIONS Investors holding positions in individual stocks may wish to hedge using futures contracts, but it would be necessary for them to cross hedge (or to hedge with a stock index) in the likely situation that there exists no futures contract on the spot stock(s) that they hold. But the appropriate method for selecting the optimal futures contract is not obvious. Thus, this study examines the use of sample matching techniques together with fundamental firm characteristics for cross hedging with single stock futures. Since individual stocks have very different characteristics from one another, the efficiency of cross-hedging using futures whose underlying asset differs from the spot stock may have been expected to be low. We show that hedging efficiency can be improved by using industrial classification to control for industry-specific effects or by using additional SSF contracts to obtain additional diversification. Overall, matching the industry of the SSF and spot stock is more important than the use of multiple SSF for hedging efficiency. In addition, eliminating market risk is at least as important as eliminating firm specific risk. Thus, hedging with market index futures as well improves hedging effectiveness compared to hedging with only SSF contracts. Our empirical results suggest that while single stock futures have much potential for hedging firm-specific risk, they still have far to go before they become a viable alternative to other traditional methods of hedging. Most of the SSF contracts currently in existence are written on larger blue chip stocks. But these stocks already have many viable hedging alternatives and are highly correlated with the market index. Our results suggest that writing exchange-traded SSF contracts on smaller, more diverse companies may be better suited for investor cross-hedging needs – specifically, the firms underlying these contracts will be closer matches (in terms of size and other firm characteristics) to the many small companies that lack other suitable derivative products. By aiming to "complete the market" rather than duplicate it, SSF exchanges may be better able to foster growth. It is worth noting that regulators have been very nervous about allowing SSF contracts on smaller, less liquid stocks because of market manipulation concerns. So, while contracts on securities that do not have listed options might be more attractive, to-date they have not been allowed. To be fair, the results reported in this paper probably underestimate the true effectiveness of our methods in practice. There are now more than twice as many firms with SSF contracts written on them as used in this study. As the number of available SSF contracts increases, hedgers will be able to more closely match firm characteristics and thus further increase hedging efficiency. #### References - Anderson, R.W., J. Danthine, (1980), "Hedging and Joint Production: Theory and Illustrations", *Journal of Finance*, 35(2), 487-498. - Anderson, R.W., J. Danthine, (1981), "Cross Hedging", Journal of Political Economy 89(6), 1182-1196. - Ang, J.S., Y. Cheng, (2005a), "Financial Innovations and Market Efficiency: The Case of Single Stock Futures", *Journal of Applied Finance*, 15(1), 38-51. - Ang, J.S., Y. Cheng, (2005b), "Single stock futures: Listing selection and trading volume", Finance Research Letters, 2, 30-40. - Baillie, R.T., R.J. Myers, (1991), "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge", Journal of Applied Econometrics, 6(2), 109-124. - Banz, R.W., (1981), "The relationship between return and market value of common stocks", *Journal of Financial Economics*, 9(1), 3-18. - Bernhardt, D., R.J. Davies, J. Spicer, (2006), "Long-term information, short-lived securities", *Journal of Futures Markets*, 26(5), 465-502. - Bertus, M., T.-H. Chu, S. Swidler, (2005), "Quarterly versus serial expiration in pure cost of carry markets: The case of single stock futures trading in the U.S.", *Working paper*, Auburn University. - Brooks, C., J. Chong, (2001), "The Cross-Currency Hedging Performance of Implied versus Statistical Forecasting Models", *Journal of Futures Markets*, 21(11), 1043-1069. - Brooks, C., O.T. Henry, and G. Persand, (2002), "The Effect of Asymmetries on Optimal Hedge Ratios" *Journal of Business*, 75(2), 333-352. - Cecchetti, S.G., R.E. Cumby, S. Figlewski, (1988), "Estimation of the Optimal Futures Hedge", *Review of Economics and Statistics*, 70(4), 623-630. - Chau, F., P. Holmes, K. Paudyal, (2005), "The impact of single stock futures on feedback trading and the market dynamics of the cash market", Working paper, University of Durham. - DeMaskey, A.L., (1997), "Single and Multiple Portfolio Cross-Hedging with Currency Futures", Multinational Finance Journa, 1 (1), 23-46. - Duffie, D., N. Gârleanu, L.H. Pedersen, (2005), "Over-the-counter markets", Econometrica, 73(6), 1815-1847. - Dutt, H.R., I.L. Wein, (2003), "On the Adequacy of Single Stock Futures Margining Requirements", Journal of Futures Markets, 23(10), 989-1002. - Ederington, L.H., (1979), "The Hedging Performance of the New Futures Markets", *Journal of Finance*, 34(1), 157-170. - Fama, E., K. French, (1993), "Common Risk Factors in the Returns on Stocks and Bonds" *Journal of Financial Economics*, 33, 3-56. - Foster, F.D., C.H. Whiteman, (2002), "Bayesian Cross Hedging: An Example from the Soybean Market", Australian Journal of Management, 27(2), 95-122. - Franken J.R.V., J.L. Parcell, (2003), "Cash Ethanol Cross-Hedging Opportunities", Journal of Agricultural and Applied Economics, 35(3), 509-516. - Gatev, E.G., W.N. Goetzmann, K.G. Rouwnhorst, (2005), "Pairs trading: performance of a relative value arbitrage rule", Review of Financial Studies, forthcoming. - Goetzmann, W.N., A. Kumar, (2005), "Why do individual investors hold underdiversified portfolios?", Working paper, Yale University. - Hung, M.W., C.F. Lee, L.C. So, (2003), "Impact of foreign-listed single stock futures on the domestic underlying stock markets", Applied Economics Letters, 10(9), 567-574. - Johnson, P.M., (2005), "Solving the mystery of stock futures", Financial Analysts Journal, 61(3), 80-82. - Jones, T., R. Brooks, (2005), "An analysis of single-stock futures trading in the U.S.", Financial Services Review, 14(2), 85-95. - Jones, T., (2005), "Individual investors, transaction fees, and growth in singlestock futures", Working paper, Florida Gulf Coast University. - Kahl, M., J. Liu, F. Longstaff, (2003), "Paper millionaires: How valuable is stock to a stockholder who is restricted from selling it", *Journal of Finan*cial Economics, 67(3), 385-410. - Knepper, Z.T. (2004), "Examining the merits of dual regulation for single-stock futures: How the divergent insider trading regimes for federal futures and securities markets demonstrate the necessity for (and virtual inevitability of) Dual CFTC-SEC regulation for single-stock futures", Pierce Law Review, 3(1), 33-47. - Kroner, F.K., J. Sultan, (1993), "Time-varying Distribution and Dynamic Hedging with Foreign Currency Futures", *Journal of Financial and Quantitative* Analysis, 28(4) 535-551. - Lascelles, D., (2002), "Single Stock Futures, the Ultimate Derivative", CSFI Publications, No. 52. - Lien, D., (2001a), "A Note on Loss Aversion and Futures Hedging", Journal of Futures Markets, 21(7), 681-692. - Lien, D., (2001b), "Futures Hedging under Disappointment Aversion", Journal of Futures Markets, 21(11), 1029-1042. - Lien, D., Y.K. Tse, (2002), "Some Recent Developments in Futures Hedging", Journal of Economic Surveys, 16(3), 357-396. - McKenzie, M.D., T.J. Brailsford, R.W. Faff, (2001), "New Insight into the Impact of the Introduction of Futures Trading on Stock Price Volatility", *Journal of Futures Markets*, 21(3), 237-255. - Neuberger, A., (1999), "Hedging long-term exposures with multiple short-term futures contracts", *Review of Financial Studies*, 12(3), 429-459. - Poomimars, P., J. Cadle, M. Thebald, (2003), "Futures Hedging Using Dynamic Models of the Variance / Covariance Structure" *Journal of Futures Markets*, 23(3), 241-260. - Rosenberg, B., K. Reid, R. Lanstein, (1985), "Persuasive evidence of market inefficiency", *Journal of Portfolio Management*, 11(3), 9-16. - Simons, H.L., (2002), "Death, taxes & single stock futures", Futures, December,
34-36. - Tookes, H.E., (2004), "Information, Trading and Product Market Interactions: Cross-Sectional Implications of Insider Trading", Working paper, Yale School of Management. #### Notes - I. Goetzmann and Kumar (2005) explore some of the reasons why individual investors hold under-diversified portfolios. Kahl, Liu, and Longstaff (2003) examine the welfare effects of restrictions on the sale of compensation-based stockholdings. - 2. Gatev, Goetzmann, Rouwnhorst (2005) form pairs over a 12-month period and trade them in the next 6-month period. They choose a matching partner for each stock by finding the security that minimizes the sum of squared deviations between the two normalized price series. They also present results by sector, where they restrict both matched stocks to belong to the same broad industry categories. - On March 16, 2006, it was announced that Interactive Brokers, LLC would make a significant equity investment in OneChicago resulting in a 40% ownership share. - CFTC regulation 41.25(a)(3), described at http://www.cftc.gov/sfp/sfpspeclimits. htm. - 5. Ederington (1979) shows that the optimal hedge ratio to minimize the variance of the payoff of the hedged portfolio usually differs from 1. Anderson and Danthine (1980) extend the analysis to multiple hedging futures by considering the degree of risk aversion in the utility function, and prove that the optimal hedge ratio for each futures asset is analytically the same as the slope coefficients of each futures asset in a multiple regression. - 6. Anderson and Danthine (1981) prove that the optimal hedge ratio in a mean-variance context for the pure hedger is equal to the variance minimizing hedging ratio with predetermined spot position when the futures price follows a martingale (i.e. $E(\Delta F) = 0$). Cecchetitti, Cumby and Fieglewski (1988) argue, through an empirical analysis of the U.S. Treasury bond market, that the optimal hedge ratio to maximize a log utility function is smaller than the risk-minimizing ratio. - 7. The literature has proposed many other hedging criteria. Examples include the maximization of expected return given a specified risk tolerance level or criteria that incorporate an asymmetric impact of portfolio returns on utility (Lien 2001a, 2001b). However, as the degree of risk aversion is usually unobservable and given the abstract nature of the utility function framework, we instead focus on the standard variance reduction measure. - 8. When a contract is rolled over into the next nearby contract, a cost arises from the price difference between the two contracts. This difference largely reflects the gap in the time value implicit in the contracts, but may also reflect differences due to the term structure of interest rates and/or trading patterns in SSFs. Because of these small differences, in practice, market participants may decide it is optimal to roll-over contracts prior to the expiration date. Nueberger (1999) and Bernhardt, Davies, and Spicer (2006) explore the optimal timing of this roll-over decision. While a proper analysis of these costs is beyond the scope of this paper, anecdotal evidence suggests that these roll-over costs are extremely small relative to the errors linked with the choice of hedging asset (the focus of this paper). - 9. As anecdotal evidence of how relatively new SSF markets can have narrow spreads, the Futures Industry Magazine reports that on the Spanish futures exchange MEFF, "Underlying shares in the cash market, which are generally priced between 10 euro and 25 euro, trade with bid-ask spreads of 0.01 euro to 0.02 euro. The market for single stock futures are seeing bid-ask spreads of only 0.02 euro to 0.03 euro." ("Spain's MEFF Scores Solid Success", Joshua Levitt, Futures Industry Magazine, Dec. 2001). - 10. This restriction ensures that hedging with the same futures asset as the underlying spot asset is not a possibility for any of the stocks in our sample.