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Catastrophe Risk and Insurer Solvency: 
A Diffusion-Jump Analysis

by Michael R. Powers and Jiandong Ren

ABSTRACT

In recent years, the magnitudes of realized catastrophe (extreme-event) losses hâve 
increased dramatically. The effects of increasing catastrophe risks on the insurance 
industry hâve been profound. In the current private insurance market, the possibility 
of insurer default is of great concern to insurers and their investors. However, there is 
limited actuarial or financial theory for analyzing catastrophe insurance contracts based 
upon the probability of ruin. In this article, we develop a mixed diffusion and compound 
Poisson jump model of insurer net worth to reflect the fact that insurers are faced with 
both non-catastrophe and catastrophe risks. Under the assumption of exponentially dis- 
tributed catastrophe losses, we dérivé analytical approximations to the insurer ruin prob­
ability. Assuming constant catastrophe loss amounts, we calculate the ruin probability 
numerically and compare the results with those for exponentially distributed losses. 
Keywords : catastrophe risk, reinsurance, insurer solvency, diffusion-jump analysis.

RÉSUMÉ

Au cours des années récentes, les catastrophes réalisées ont beaucoup augmenté. Les 
effets de l’augmentation des risques de catastrophe sur l’industrie de l’assurance ont 
été profonds. Dans les marchés d’assurance courants, la possibilité qu’un assureur fasse 
faillite est une source importante d’incertitude pour les assureurs et leurs investisseurs. 
Par contre, la théorie financière et actuarielle est limitée pour analyser les contrats d’as­
surance avec risque de catastrophe basés sur une probabilité de défaillance. Dans cet 
article, nous développons un processus de diffusion basé sur un modèle Poisson qui tient 
compte du fait que l’assureur est confronté à la fois à du risque de catastrophe et de non- 
catastrophe. Sous l’hypothèse que les pertes de catastrophe sont distribuées de façon 
exponentielle, nous obtenons une forme analytique de la probabilité de défaillance de 
l’assureur. Sous l’hypothèse que les pertes de catastrophe sont constantes, nous calcu­
lons la probabilité de défaillance numériquement et comparons les résultats à ceux sous 
l’hypothèse qu’elles sont distribuées de façon exponentielle.
Mots clés : risque catastrophique, réassurance, solvabilité des assureurs, diffusion par sauts.
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■ INTRODUCTION

In recent years, the magnitudes of realized catastrophe (extreme- 
event) losses hâve increased dramatically. Hurricane Andrew in 
1992 and the Northridge earthquake in 1994 caused insured losses 
of approximately $20 billion and $16 billion, respectively—sizes 
unthinkable before the 1990s. The September 11 terrorism attacks 
in 2001 caused simultaneous losses over multiple lines of business, 
including property, business-interruption, workers’ compensation, 
and life insurance. Estimâtes of insured loss amounts from these 
attacks range from $50 to $70 billion.

The effects of increasing catastrophe risks on the insurance 
industry hâve been profound. Lewis and Murdock (1996) contend 
that because of the infrequency and large magnitude of extreme- 
event losses, catastrophe risks need to be diversified intertemporally 
as well as spatially. Given that catastrophe losses are geographically 
correlated within a risk pool, intertemporal diversification is clearly 
important. However, the possibility of insurer bankruptcy impedes 
the successful time-diversification of large losses, because asymme- 
try and high capital costs often preclude insurers from maintaining 
sufficient capital (net worth) to guarantee the risk pool against bank­
ruptcy. Froot and O’Connell (1999) show that realized catastrophe 
losses lead to higher prices for and reduced supply of catastrophe 
reinsurance because of capital market imperfections.

Since the U.S. fédéral govemment effectively has zéro default 
probability, it can borrow at the risk-free rate, and is thus in a unique 
position to diversify daims intertemporally. For this reason, Lewis 
and Murdock (1996) proposed a market-based model in which 
the fédéral govemment would attempt to extend private insurance 
capacity though the création of a fédéral excess-of-loss (XOL) rein­
surance mechanism narrowly targeted to the missing market for the 
intertemporal diversification of catastrophe losses. Assuming that 
the XOL reinsurance contracts can cure (or greatly alleviate) market 
imperfection, Cummins, Lewis, and Phillips (1999) provide a pricing 
formula for them.

In the current private insurance market, the possibility of insurer 
default is of great concem to investors and insurers. However, there 
is limited actuarial or financial theory for analyzing catastrophe 
insurance contracts based upon the probability of ruin. In this article, 
we develop a mixed diffusion and compound Poisson jump model 
of insurer net worth to reflect the fact that insurers are faced with 
both non-catastrophe and catastrophe risks. Under the assumption 
of exponentially distributed catastrophe losses, we dérivé analytical 
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approximations to the insurer ruin probability. Assuming constant 
catastrophe loss amounts, we calculate the ruin probability numeri- 
cally and compare the results with those for exponentially distributed 
losses. Ail proofs are in the Appendix.

■ MODELS OF INSURER NET WORTH

The classical actuarial model of insurer net worth,

(1)
i=i

(see, e.g., Bowers, et al., 1997, p. 399) is based upon assump- 
tions of linear income and a compound Poisson jump process. 
However, when the number of daims is large, and the size of losses 
is small relative to the insurer net worth, the insurer’s net worth 
essentially becomes a diffusion (Iglehart, 1969). Using diffusion 
models, it is possible to incorporate stochastic premium and invest- 
ment income rates into the analysis of insurer net worth, as well as 
to study first-passage times to ruin analytically (see, for example, 
Schmidli, 1994 and Powers, 1995).

Diffusion models are based upon the assumption that the net 
worth process possesses a continuous sample path with probability 
one. This means that in a short interval of time net worth can change 
by only a very small amount. While such models are entirely rea- 
sonable for non-catastrophe insurance risk, they do not permit the 
modeling of catastrophe risk, which exposes insurers to potentially 
large jumps in liabilities.

Insurers need a model that considers both non-catastrophe and 
catastrophe risks simultaneously. However, the theoretical literature 
on this topic is fairly limited. Merton (1976) developed an option 
pricing formula for the case in which stock retums are generated 
by a mixture of both continuous and jump processes. In that model, 
the continuous process reflects the “normal” variation in price that 
causes marginal changes in stock value, whereas the jump process 
describes the “abnormal” variation in price that has more than a mar­
ginal effect on value. Cummins (1988) extended Merton’s theory, 
developing a pricing model for an insurance guaranty fund when 
insurers are subjected to both continuous (non-catastrophe) and dis- 
continuous (catastrophe) changes in liabilities.
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Both Merton (1976) and Cummins (1988) used equilibrium 
models assuming that the market is “frictionless”, the jump risk 
is nonsystematic (uncorrelated with the market), and the Capital 
Asset Pricing Model (CAPM) is a valid description of equilibrium 
security/insurance price. These assumptions lead to the conclusion 
that the required retum for bearing catastrophe risk is simply the 
risk-free rate, and so the fair premium on a catastrophe insurance 
contract should be less than or equal to the actuarial value of the con- 
tract loss. However, in today’s insurance market, catastrophe insur­
ance premiums are considerably greater than actuarial estimâtes of 
expected losses.

One significant reason why catastrophe insurance prices are 
high is that the capital market for catastrophe risk-taking is limited 
(Froot, 1999). Without sufficient capital (net worth), insurers are 
faced with a greater risk of insolvency. This default risk imposes 
both explicit and implicit cost on insurance firms (Hoerger, Sloan, 
and Hassan, 1990), including changes in company bond ratings, 
regulatory intervention, and restructuring. The possibility of insol­
vency also prevents insurers from effectively diversifying disaster 
risks intertemporally (Lewis and Murdock, 1996). Consequently, it 
is important to consider the probability of ruin in studying the price 
and supply of catastrophe insurance contracts.

In this article, we develop a mixed diffusion and jump model 
of insurer net worth, in which the change in net worth due to under- 
writing non-catastrophe risk is described by a Brownian motion with 
drift, and the change in net worth due to underwriting catastrophe 
risk is described by a classical compound Poisson jump process. 
This model provides a different interprétation of the classical risk 
process “perturbed by diffusion” of (Dufresne and Gerber, 1991). In 
the classical process perturbed by diffusion, the principal insurance 
risks are described by a compound Poisson loss process, and the dif­
fusion process simply provides an additional layer of risk with regard 
to either losses or premium income.

Under the mixed diffusion-jump model, we dérivé analytical 
approximations to the insurer’s probability of ruin when the magni­
tude of catastrophe losses is exponentially distributed. These results 
show analytically how underwriting catastrophe risk affects an 
insurer’s ruin probability, and provide insurers an effective tool for 
making such underwriting decisions.

Since most individual insurers write only one spécifie layer 
of catastrophe risk at a time, it is reasonable (and conservative) to 
assume that the magnitude of each catastrophe loss is the (constant) 
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upper limit of the layer. Under this assumption, we develop numeri- 
cal solutions for the insurer ruin probability when loss amounts are 
constant, and compare these results to those for the exponential 
case. Not surprisingly, the comparison shows that for most insurers, 
the assumption of exponential losses is more conservative than the 
assumption of constant losses.

■ THE DIFFUSION-JUMP MODEL OF INSURER 
NETWORTH

□ Diffusion Processes and Jump Processes

For t >0, let U(t) dénoté an insurer’s net worth at time r, and let 
t/(0) = u()> 0 be the insurer’s initial net worth. We use the notation 
UD(t) to dénoté a net worth model described by a simple diffusion 
process with Brownian motion and positive drift, and Up(t) to dénoté 
a model described by the classical model (1) with linear income and 
compound Poisson losses.

For the diffusion case, we model the change in UD(t) due to 
underwriting non-catastrophe risk and the accumulation of invest- 
ment income by the stochastic differential équation (SDE) 

(2)

where : a represents the instantaneous growth of insurer net worth 
due to underwriting non-catastrophe risk and the accumulation of 
investment income; p is the instantaneous variance of the insurer net 
worth, given no catastrophe events; and Z(z) is a standard Brownian 
motion representing the local disturbance caused by non-catastrophe 
insurance operations. We assume that once an insurer’s net worth 
reaches zéro, the insurer becomes insolvent, and cannot recover. 
Therefore, UD(t) has an absorbing barrier at UD(f) = 0, and we dénoté 
the probability of ruin by

V0(Mo) = Pr{3 re(0,oo) s.t. UD(t)< O|î/d(O) = mo}

The classical jump process (1) can be characterized by the SDE

dUp(t) = (1 + 0)À|izfr - X(t)dN(t) y (3)

where N(t)e{0,1,2,...} dénotés a Poisson counting process with 
parameter Â/, the X(f)e[0,oo) are i.i.d. random variables indepen- 
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dent of N(t) with mean p, and 0 is the insurer’s total profit loading. 
The process Up(t) also has an absorbing barrier at Up(f) = 0, and the 
probability of ruin is denoted by

yp(w0) = Pr{3 t<(0,o°) s.t. r/p(t)<O|L/P(O) = uo}.

□ The Mixed Process

Combining the processes described by équations (2) and (3), 
we model the insurer’s net worth by a mixed continuous and jump 
process subject to the SDE

dUM (t ) = [a + (1 + 0)X|ip + - X(t)dN(t), (4)

and dénoté the probability of ruin by

y M(“o) = Pr{3 r<(0,oo) S.t. t/M(r)<O|t/M(O) = Mo}.

In the spirit of Powers (2002), we define a portfolio of catastro­
phe (extreme-event) risk as a collection of exposures during the time 
period (0,0 that produces the total loss amount 

where E[N(z)] = À, = O(A)r, and E[X(r)] = p = O(l//2),forsornesmall 
real number h > 0.1 We study (7w(r)as h -»0and Àp -» K g (0,^) for 
two cases : (1 ) uQ = Kp + O(/z), and (2) «ois constant.

We conclude this section by stating three basic results regard- 
ing the separate diffusion and jump processes that provide a useful 
context for our further analysis of the mixed diffusion-jump process 
in a later section.

Lemma 1 : If an insurer’s net worth process UD(t) is described 
by the SDE (2), then :

2<^o

G) Vd(«o)=« p ;

(ii) for u0 = Kp + O(h\ lim\|ZD(w0) = 0; and
A->0 V '

(iii) for fixed w0, lim\|/D(w0) = ^ 13 .

Lemma 2 : If an insurer’s net worth process Up(t) is described 
by the SDE (3) such that the X(r)are i.i.d. exponential random vari­
ables with mean p, then:
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(0 Vp(wo) — " »t

(ii) for uQ = K|i + O(/z),

; and

i
ei+Q for u0 = |1

(ii) forw0

(iii) for fixed h0, limv„(M0) =------
0 07 i+e

A —1-------- ei+Q for K = 1
i+e

1+0

—— for K = 0 
i+e

Lemma 3 : If an insurer’s net worth process Up(t) is described 
by the SDE (3) such that X(t) = p for ail /, then :

-- - for un = 0 
i+e 0
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(iii) for fixed w0, limvP(w0) = -—

■ THE MIXED PROCESS WITH EXPONENTIAL 
CATASTROPHE LOSSAMOUNTS

□ The Probability of Ruin

The following theorem provides analytical approximations to 
the probability of ruin for UM(î) under two different assumptions 
regarding the insurer’s initial net worth.

Theorem 1 : If an insurer’s net worth process UM(t) is described 
by the SDE (4) such that the X(t) are i.i.d. exponential random vari­
ables with mean p, then:

(i) for u0 = Kp + O(h)

71 K
1 ; and

(ii) for fixed w0,

r a+97c i 
[a+(l+0)7t ]'

Proof : See the Appendix

□ The Marginal Addition of Catastrophe Risk

The results of Theorem 1 can be applied immediately to the 
study of how the incorporation of catastrophe risk into an insurer’s 
portfolio will change the insurer’s probability of ruin. In this sub­
section, we consider the case of adding a catastrophe risk process on 
the margin, without reducing the non-catastrophe component of the 
insurer’s portfolio. In the following sub-section, we consider the case 
of substituting catastrophe risk for non-catastrophe risk.

Let

dUA (0 = [oc + (1 + 0)wXp]dt + <ffidZ(t) - X(t)dNw (f), (5)
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where Nw(t) ~ Poisson(wXr). In other words, let £7Â(t)denote a net 
worth process in which the introduction of catastrophe risk is gov- 
emed by the parameter w in the Poisson counting process. We then 
obtain the following results.

Theorem 2 : If an insurer’s net worth process is described by 
the SDE (5) such that the X{t) are i.i.d. exponential random variables 
with mean p, then :

(i) for m0=k|I + O(A), the addition of catastrophe risk to a 
non-catastrophe or mixed portfolio never enhances the insurer’s 
solvency; and

(ii) for fixed u0, the addition of catastrophe risk to a non-catas­
trophe portfolio enhances the insurer’s solvency if and only if

1 f 2au0

Proof : See the Appendix

Theorem 2 provides an interesting and somewhat surprising 
insight. By comparing the results of parts (i) and (ii), we see that 
the insurer can improve its solvency (reduce its ruin probability) by 
adding catastrophe risk when its level of net worth is dwarfed by the 
magnitude of individual catastrophe losses—i.e., when w0 is constant 
as p—However, the insurer cannot improve its solvency by 
adding catastrophe risk when uQ is of the same order of magnitude as 
the expected loss amount—i.e., when u0 = Kp + O(h).

This resuit appears counterintuitive : after ail, one would think 
that the potential for enhancing solvency through the addition of 
catastrophe risk would be greater when w0 is more substantial com- 
pared to p. However, the resuit can be explained by noting that when 
Mo = + the ruin probability is already relatively small, and
cannot be improved simply by adding capital through premium 
income, regardless of the size of the profit loading 0. The opposite 
situation holds for the case in which w0 is constant; in fact, part (ii) 
shows that adding catastrophe risk to an insurer’s portfolio is helpful 
when the profit loading 0 is large and/or the insurer’s intrinsic level 

of risk is great (i.e., is small). Part (ii) also provides the fol­

lowing simple rule-of-tnumb for selecting 0 (when j ) :
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In short, underwriting catastrophe risk may reduce the probabil- 
ity of ruin for high-risk companies (i.e., those with an initially high 
ruin probability), but can only increase the probability of ruin for 
safer companies (i.e., those with an initially low ruin probability).

□ The Marginal Substitution of Catastrophe Risk

We now consider the case of substituting catastrophe risk for 
non-catastrophe risk. Let

d(/s(t) = [(1 - w)a + (1 + 6)wÀ.p] dt

+(\-W)^dZ(t)-X(t}dNw{t)t

where Nw(t) ~ Poisson(wÂr). In other words, let Us(t) dénoté a net 
worth process in which the introduction of catastrophe risk is gov- 
emed by the parameter w in the Poisson counting process, and the 
réduction of non-catastrophe risk is govemed by the complementary 
parameter 1- w.

Theorem 3 : If an insurer’s net worth process is described by 
the SDE (6) such that the X(f) are i.i.d. exponential random variables 
with mean p, then :

(i) for w0 = Kp + O(A), the substitution of catastrophe risk into 
a non-catastrophe or mixed portfolio never enhances the insurer’s 
solvency; and

(ii) for fixed w0, the substitution of catastrophe risk into a non- 
catastrophe portfolio enhances the insurer’s solvency if and only if

P J a _ y 1 I 2aw0
2an0

P
. P J

a

Proof : See the Appendix

The results of Theorem 3 are analogous to those of Theorem 2. 
Here we see that the insurer can improve its solvency (reduce its 
ruin probability) by substituting catastrophe risk when its level of net 
worth is much smaller than the magnitude of individual catastrophe 
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losses—Le., when w0 is constant as p,—><». However, the insurer 
cannot improve its solvency by substituting catastrophe risk when 
UQ =K\i + O(h).

The explanation for this phenomenon is the same as before. 
When «o = Kg + (?(ft), the ruin probability is relatively small, and 
cannot be improved by adding capital through premium income, 
regardless of the size of the profit loading 0. The opposite holds for 
the case in which u0 is constant; in fact, part (ii) shows that substi­
tuting catastrophe risk for non-catastrophe risk can boost solvency 
with a smaller profit loading than that which is needed when adding 
catastrophe risk. This is because substitution, unlike addition, does 
not spread the insurer’s net worth over a larger total pool of risk. As 
in Theorem 2, part (ii) provides a simple rule-of-thumb for selecting
9 (when 2kmo.<i):

P

■ THE MIXED PROCESSWITH CONSTANT
CATASTROPHE LOSSAMOUNTS

□ Theory

In the previous section, we treated the magnitude of catastrophe 
losses as an exponential random variable. However, one might argue 
that this assumption is unrealistic because of the highly skewed 
nature of catastrophe losses. In fact, while it is true that raw catas­
trophe loss amounts are highly skewed, it is generally the case that 
individual insurers cover only one layer of catastrophe risk at a time. 
Therefore, there is generally an upper limit to an insurer’s loss pay- 
ment when a catastrophe occurs, and it is reasonable (and conserva­
tive) to assume that whenever a catastrophe loss occurs, the insurer 
simply pays the upper limit.

Under this assumption, we will compute the insurer’s ruin prob­
abilités numerically, and compare the results with those when the 
magnitude of catastrophe losses is exponentially distributed. We will 
show that by setting the exponential mean equal to the upper limit 
of the catastrophe loss payment, the results in the previous section 
provide a conservative estimate of the insurer’s ruin probability.
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We begin by showing that when the catastrophe loss amount 
X(t) is constant, the insurer’s probability of ruin satisfies a certain 
ordinary differential équation (ODE). To simplify notation, let 
y = a + (l + 9)Xp, so that the mixed diffusion-jump model given by 
équation (4) becomes

dUM (0 = ydt + -VP JZ(0 - X(t)dN(t) (7)

Theorem 4 : If an insurer’s net worth process is described by 
the SDE (7) such that X(t) = p for ail Z, then the ultimate survival 
probability, Ç„w(wo) “ satisfies the ODE

subject to the boundary conditions Ç>m(uo) ~ 0 and C,M(°°) = 1.

Proof : See the Appendix

To study the case of adding catastrophe risk on the margin, we 
replace X by wX in the ODE (8), and see that Ça(m0) = 1- Va(wo) 
must satisfy

1 dU«o)
2 Suq a duQ

where yA = oc + (1 + 0)wX|i. Similarly, to study the case of substi- 
tuting catastrophe risk for non-catastrophe risk on the margin, we 
replace a by (1 - w)a, P by (1 - w)2p, and X by wX in (8), and see 
that = 1- Vs(wo) must satisfy
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-wàÇs(m0)
2 OUq (JUq

+wkÇs(uQ - |i) for u0 > p
’ (10)

-wXÇs(w0)for u0 < p

where ys = (1-w)a + (l + 0)wXp. Equations (8), 9), and (10) are 
ODEs with a shift. Although they are difficult to solve analytically, 
one can use Euler methods to obtain numerical solutions.

□ Numerical Results

We now provide an analysis of the ruin probabilities for the 
mixed model with constant loss amounts. Because we plan to com­
pare these results with those for the mixed model with exponential 
losses, we will assume that uQ is constant as p grows large. Then, by 
Theorems 2(ii) and 3(ii), there will exist some values of 6 for which 
the insurer can benefit from incorporating catastrophe risk with 
exponential losses into its portfolio.

The following parameter values are used in our analysis : 
a = 107, P = 2-1015, 0 = 2, X = 10-3, p = 109, and uQ = 108 or 2 108. 
For the case of exponential loss amounts, these parameters are 
inserted into the asymptotic équations for Va(wo) and Vs(wo).

For the addition of catastrophe risk, Figure 1 provides compari- 
sons of ruin probabilities for the mixed model with exponential and 
constant loss amounts, respectively. From this figure, we immedi- 
ately observe that the ruin probabilities for the constant loss case are 
very close to—but consistently less than—those for the exponential 
loss case. This shows that, for the parameter values selected, the 
greater variability of the exponential losses translates into a greater 
probability of ruin, which can thus be used as a conservative (upper) 
bound on Vx(Mo) for the constant loss case.

To provide some context for the various ruin probabilities 
shown, we note that when , w = 0, the mixed process becomes a pure 2OMQ
diffusion, and so Va(mo)~^ P by Lemma l(iii). As on
the other hand, the mixed process becomes a classical compound
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I
 FIGURE I

PROBABILITY OF RUIN WHEN ADDING 
CATASTROPHE RISK

— uO =100 Million, Exp. <00 = 200 Million, Exp.
----- uO = 100 Million, Const. x uO = 200 Million, Const.

Poisson jump process, and so Va(mo) —*------by Lemma 2(iii) and
1 + 0

Lemma 3(iii).

Comparing the ruin probabilités for w0 = 108 with those for 
u0 = 2-108, we see that for the smaller value of uQ9 WA(u0) *s initially 
decreasing over w (i.e., at w = 0), whereas for u0 = 2108, WA(uQ) is 
initially increasing. These two cases correspond to the two alterna­
tives indicated by Theorem 2(ii) : for uQ = 108,

whereas for «0 = 2-108,

0<

P
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We now consider the substitution of catastrophe risk for non- 
catastrophe risk, as shown in Figure 2. Here, we see again that the 
ruin probabilities for the constant loss case are very close to—but 
consistently less than—those for the exponential loss case. Thus, for 
the parameter values selected, the exponential loss assumption pro­
vides a conservative (upper) bound on the ruin probabilities.

I
 FIGURE 2

PROBABILITY OF RUIN WHEN SUBSTITUTING

CATASTROPHE RISK
----- uO =100 Million, Exp. ♦ uO = 200 Million, Exp. 
----- uO =100 Million, Const X uO = 200 Million, ConsL

w

Looking from left to right in Figure 2, we see the transition from 
a pure diffusion (at w = 0) to a classical compound Poisson jump 

2ouzq

process (at w = 1). Thus, by Lemma l(iii), Vs(wo)= e P at w = 0, 

and by Lemma 2(iii) and Lemma 3(iii), V5(w0) = —“ at w = l.2 In 

a sense, the curves in Figure 2 provide an accelerated view of what 
happens to the curves in Figure 1 as w —> . However, it is impor­
tant to note that the curves in Figure 2 are not simply “stretched 
out” isomorphisms of those in Figure 1. Specifically, we note that 
when w0 = 24O8, V5(w0) *s initia.lly decreasing over w (i.e., at w = 0), 
whereas Va(m0) is initially increasing. This différence occurs pre- 
cisely because the condition given by Theorem 3(ii) is more easily 
satisfied than is the condition given by Theorem 2(ii).
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■ CONCLUSION

In this study, we hâve developed a mixed diffusion-jump model 
of insurer net worth. The diffusion portion consists of a Brownian 
motion with drift, which represents changes in net worth due to 
underwriting non-catastrophe risk and the accumulation of invest- 
ment income; the jump portion consists of a classical compound 
Poisson jump process, which represents changes in net worth due to 
underwriting catastrophe risk.

When the magnitude of catastrophe losses is exponentially dis- 
tributed, we find approximate analytical solutions for the insurer’s 
probability of ruin, and provide conditions under which insurers can 
enhance solvency by adding catastrophe risk to their portfolios, or by 
substituting catastrophe risk for non-catastrophe risk.

Given the common insurer practice of covering only one layer 
of catastrophe risk at a time, it is reasonable and conservative to set 
the amount of each catastrophe loss equal to the upper limit of the 
catastrophe insurance contract. Under the assumption of constant 
loss amounts, we solve for the insurer’s probability of ruin numeri- 
cally, and show that slightly lower ruin probabilities are obtained 
than in the case of exponential losses. Therefore, by setting the 
exponential mean equal to the upper limit of an insurer’s catastrophe 
insurance contract, the insurer can conservatively evaluate the effects 
of incorporating catastrophe risk into its insurance portfolio.

■ APPENDIX

Proof of Lemma 1 : Part (i) states the well-known probability 
of passage from u0 to 0 for a simple Brownian motion with positive 
drift (see, e.g., Powers, 1995). Parts (ii) and (iii) follow immediately 
from (i) by taking the appropriate limits.

Proof of Lemma 2 : Part (i) states the well-known probability 
of ruin for the classical net worth process with linear income and 
compound Poisson/exponential losses (see, e.g., Bowers, et al., 
pp. 414-415). Parts (ii) and (iii) follow immediately from (i) by 
taking the appropriate limits.

Proof of Lemma 3 : The probability of ruin for the classical net 
worth process with linear income and compound Poisson/constant 
losses may be expressed as follows, for u0 = Kg, K e {0,1,2,...} :
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f 1
Pr- A z{(i+e)xj >K + 1

(Al)

Rearranging équation (Al) yields

e IÏ5[l-Vf.((K + 1M

e ^[i-v4(K+i-j)^]-vfM

<=> v4(k + 1»

= 1 -[l -VP(Kg)]e1+9 + l(-J-) [l -Vp((k +1 -J')H)]

for K = {1,2,3, •..}, or equivalently,

î
y P(Kg) = 1 - [l - \|/p((k - l)g)p+e

+|XïTïïïll"'t''’((K’J'W1'
for K= {2,3,4,...}. This proves part (i) for K>2. For the case of 
k = 0, it is well-known that 

for the classical net worth process with linear income and compound 
Poisson losses (see, e.g., Bowers, et al., p. 415). We then solve the case

K = 1 by substituting VP(0) = -—-into the recursive relation (Al).
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Part (ii) follows immediately from (i) by taking the appropriate 
limits. Part (iii) can be demonstrated by considering what happens 
for fixed u0 as p -> Since the probability of ruin is invariant over 
simultaneous scale transformations of both u() and p, it follows that 
the probability of ruin for fixed uQ as g —> 00 must approach the prob­
ability of ruin for fixed p as w0 —> 0.

Proof of Theorem 1 : From Dufresne and Gerber (1991), we 
know that the ruin probability must be of the form

lM°+C2e 20? (A2)

where rj and r2 are the roots of the équation

(l/g)-r (A3)

and

c2 = i-cu (A4)

It is straightforward to show that the roots of the quadratic équa­
tion (A3) are given by

 a + (1 + 0)Àp 1
r~ p +2^

a + (l + 0)Xp _1_T _ 2[(a/X)+0p] 
P + 2pJ P

which can be rewritten as 

r_ a + (l + 6)Xp ! 1

a + (1 + 0)Xp 1 X
P 2p a + (l + 0)Xp

X x T
p[q + (1 + 0)Xp] q + (l + 0)Xp
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±

P

P
and therefore

a + 02qi

[2[a+(l+0)A+i]
i /l Pa + 0X|i

«o
+

-0(1//.)V.w (Mo ) “

X|i
+ 0(/z) e

>

<=> r

C2=l-

2

+ C>(/i2)

+ |_a + (l + 0)X|i

Thus, the solution provided by équation (A2) is

Vm(Mo) = + C2e’r2“”

/ + 0(h) e
a + (l+0)A,|i

x
a+(l+0)Xg

a + (1 + 0)Xg + a + (l + 0)Zg

For wQ = Kg + 0(h), équation (A5) may be rewritten as 

a + 0Xg

H------- 4—+o(a2)1
[|i a+(l+0)X|i ' 'J

T q+0Xg 
[a+(l+0)Xn

, „ +O(h) e
a+(l + 0)Xg 1

Substituting these roots into the System (A4) yields

c =_____P________ = a + e^ +
* 2[a + (1 + eM | C(/;) oc + (l + 0)Xg

—-------+o(/0.

a + (l + 0)Àg 1
P ' 2g

la+(1 + 0)Âg 1 À1
H P 2g ' a + (l + 0)Xg
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and we obtain the limit in part (i) of the theorem. For fixed u0, équa­
tion (A5) may be rewritten as

a + 0X|x 
a + (1 + 0)Xp

•M0
+ O(h) e 1 p 1

+
Xp

a + (1 + 0)Xp
+ O(/i)

which yields the limit in part (ii).

Proof of Theorem 2 : (i) For u0 = Kg + O(h), Theorem l(i) 
shows that

[q+6w7t 1 
a+(l+6) VV7C j

a + (l + 0)w7r 

Consequently,

X

K

+ 5 >e

ane W7tK
9

[a-t-OwK 1 
a+(l+0)wn]

[ot+fovTT 1 
a+(l+0)HTt]

dw a + (1 + 0)w7t

[a + (1 + 0)wn]07i - (a + 0wn)(l + 0)n 
[a + (1 + 0)w7t]2

[a + (1 + 0)w7t]n - w(l + 0)k2

- -------------------- r ------------------+ 1 
[a + (l + 0)w7t] a + (1 + 0)w7t

[a + (1 + 0)wn]2

T a+OtvTt 1 
[a+(l+0)H7t]

which is positive for ail w > 0.

(ii) For fixed u0, Theorem 1 (ii) shows that

VA(»o) = lim'l'A(«o)
7 h->0

2[«+(1+8)h*K
a + w07T « wn=--------------------------- e p ------------------------------

a + (l + 0)w7t a + (1 + 0)w7t

Consequently,
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a+ 0vvh 
a + (l + 9)w7t

e

2[a+(l+0)w>rc]
7——». 2(1 + 0)nwo

P

[a + (1 + 0) wjc]0k - (a + 0w7t)[(l + 0)n] -2la+(l^9)'WIlUll 
[a + (l + 0)w7t]2

[a + (1 + 0)wk]k - wn (1 + 0)n] 
[a + (l + 0)wrc]2

1
a + (1 + 0)w7c

2(a + 0 w7t)(l + 0)ttho 
. P

+ a
a + (l + 0)wn

2[a+(l+e)H-rc]

P

arc
a + (l + 0)wrc

It then follows that

which implies

/

<=> 0> —

Kwrc

Consequently,

* >

Proof of Theorem 3 : for w0 = K|i + O(h), Theorem 1 (i) shows 
that

[ (l-w)a4-0mc 1
L(l-w)<X+(l+0)H>Jt J

Vsh)=limVs(.0) = ïï-^ï75J-e

<0 
w=Û

( n A
e p _ | _ 2aa0

P ÿ 1 
2o% “^(i + 1)!

P

dw

_ 1 2a(l + 0)7tMo
2a

“T"0 
e p +rc

dw A a
w=0

L P J
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VV7C

X<

4^

k
CMte WKK

l-w)ot+0H'rt 
■H’)a+(l+e)wrt

[(l-w)ct+en'ft 1 
(l-H')a+(l+6)H^c J

[(1 - w)a + (1 + 0)w7c]2 (1 - w)oc 4- (1 + 0)wK

[(1 - w)a 4- (14- 0)wk]2

[(l-w)a+6w7C 1
( 1-w )a+( 1+9) wn ]

which is positive for ail w > 0.

(i)For fixed u(), Theorem 1 (ii) shows that

Vs(wo)=!ilWs(wo)
n—

z. x ~ 2[(l-w)a+(l+0)w]tto
_ (l-w)a4-w07t (1_w)2 p

(1 - w)a 4- (1 + 0)wk

+ WTl
(1- w)(X4-(l4-0)wK

Consequently,

x<

[(1 — w)a 4- (14- 0)wk]2

[(1-w)a4-(l4-0)w7t]“

2[(l-H)a+(l+0)Hrt]

xe ,0

+ [(1 - w)a 4- (14- 0)wæ]k ~ w[-a 4- (14- 0)k]

• \ / x. 2Ï(l-w,)a+(l+0)wjrl
dWsM = (l-w)q + 0w7t e m°

dw (1 - w)a 4-(l 4-0)w7i

{(! - w)2 [“« + 0 + 0)4 + 2[(1 - w)a + (1 + e)w](l - w)} ■

[(1 - w)a + (1 + 0)w7t](-a + 0k) - [(1 - w)a + 0 wn ][ - a + (1 + 0)k]
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1
(l-vv)a + (l + 0)wc

2w0[(l - w)oc + (1 + w)k(1 + 0)][(1 - w)a + OvVTc] 
3(1 - wŸ

______ arc______  
(1 - w)a+(1 + 0)w

2[( 1-w )a+( 1+9) hic]
(l-w)2p W°_____________OCTC___________

(1 - w)a + (1 + 0)wTC

It then follows that

►

<0

’ K

which implies

^Vs(^o)

dw
w=0

2ouq

e p -1-

~0>“-------2^

P

_ 1 2a[a + (1 + 0)7t]uo 2a
“b"“°P +71

A H>=0 [ P J

, (A6)

Proof of Theorem 4 : Equation (7) describes a diffusion pro- 
cess satisfying the backward équation

3p(w;w0,z) 1 32p(u;w0j) 3p(w;u0,z) . / \
—âT“=ip +y~0—

x)dx

where p(u;uQJ) is the probability density of UM(f) at the point u given 
that : (1) the process starts from UM(0) = w0, and (2) the process does 
not reach the absorbing barrier of zéro prior to time t.

Integrating both sides of (A6) over the interval (u, °o), it can 
be shown that the survival fonction, Çw(?;w()) = Pr{ U^x) > 0 for 
ail tg(0,0 | UM(0) = m0}, also satisfies the backward équation. 
Specifically,

_ 1 q dÇM(t'9uQ) ( \
“S-=2P a«5 +ï“—
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subjectto the boundary conditions Çw(7;a0) = OandÇM(?;oo) = l.Taking 
limits as t->oo, we find that l-\|/A/(M0) = limÇM(r;tt0) = ÇM(w0) 
must satisfy

(A7)

subject to the boundary conditions = 0 and ÇM(°°) = 1.

Since Xft) can take on only one value, its probability density 
function is given by the Dirac delta fonction; i.e.,

which has the property

Therefore, substituting/y(x) into équation (A7) yields the ODE
(8).
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□ Notes
1. Powers (2002) actually considers a somewhat simpler model with random loss 

amount X = I x Y, where / — Bernoulli(p), Y ~ Normal (p,G2), / and Y are statistically indepen- 
dent, and limits are taken as p —» 0, g —> <*>, pp —» 7t e (0,°o),and > 0.

I
2. Actually, for the case of constant loss amounts, \|/s(u0) is pictured as less than ------

I ■+• 0
because the ODE (10), unlike the équation inTheorem I (ii), is not an asymptotic expression 
(as h -> 0).
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