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RÉSUMÉ

Nous rapportons une découverte d’ambre dans les roches sédimentaires Carbonifères du terrain houiller 
de Sydney, en Nouvelle-Écosse, Canada. L’ambre se manifeste sous forme de gouttelettes ainsi que de 
figures linéaires, et il a une teinte variant du brun pâle au mauve foncé. L’ambre a été découvert in situ dans de 
la siltite au-dessus du filon de charbon du Pennsylvanien moyen Hub, où il est associé à des pinnules 
abondamment falsifiées de la fougère à graines Linopteris obliqua. Les spécimens d’ambre ont été analysés 
par spectrométrie infrarouge et leurs caractéristiques spectrochimiques ont été comparées à celles d’autres 
ambres fossiles. Cette découverte élargit non seulement l’inventaire de l’ambre à une période remontant à 
environ 300 millions d’années, mais documente également la capacité des fougères à graines Carbonifères 
d’utiliser des mécanismes biosynthétiques pour produire des exsudats résineux.

[Traduit par la redaction]
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ABSTRACT

We report on a discovery of amber from the Carboniferous sedimentary rocks of the Sydney Coalfield, Nova 
Scotia, Canada. The amber occurs in the form of droplets and as a linear feature and ranges in colour from light 
brown to dark purple. The amber was found in situ in siltstone above the Middle Pennsylvanian Hub coal seam, 
where it was associated with abundantly abscised pinnules of the seed fern Linopteris obliqua. The amber 
specimens were analyzed by infrared spectrometry and their spectrochemical characteristics were compared 
with those of other fossil ambers. This discovery not only expands the inventory of amber to as old as ~300 
million years, but also documents that Carboniferous seed ferns were able to utilize biosynthetic mechanisms to 
produce resinous exudates.
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INTRODUCTION

  Fossil resin, or amber, has been known since prehistoric 
times and used in a variety of applications, such as varnish, 
paint binder, adhesive, and jewelry (Lucas and Harris 1962). 
Resins can be defined as lipid soluble mixtures of volatile and 
non-volatile terpenoid and/or phenolic secondary  
compounds that are secreted either within or on the surface 
of plants (Langenheim 2003). Fossilization of resins and their 
preservation in the fossil record as amber provide important 
sources of information in relation to chemotaxonomy, geo-
chemical processes, and provenance studies (e.g., Anderson 
et al. 1992; Broughton 1972; Lyons et al. 2009). Most fossil 
resins come from Cretaceous to Neogene sediments, and 
they are mostly products of conifers and angiosperms 
(Langenheim 2003).

   Amber in Canada is known mainly from the western 
provinces, notably from Alberta, where it occurs in Late 
Cretaceous and, to a lesser extent, in Paleocene forma-
tions. In these rocks it was dominantly sourced from 
conifers, likely from members of the family Cupressaceae 
(McKellar and Wolfe 2010). Although mostly recovered 
from bituminous coal seams, amber is also found in 
organic-rich shale beds overlying those coals in Alberta.
   In this paper we report the discovery of amber from 
Carboniferous (Middle Pennsylvanian) sedimentary rock 
from the Sydney Coalfield, Nova Scotia, Canada (Fig. 1). 
To our knowledge, it is the first discovery of amber in 
association with a seed fern. We compare the spectro-
chemical characteristics of the amber with other selected 
fossil ambers.

mailto:morten.smelror@ngu.no
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MATERIAL AND METHODS

Material

In 2008, a fossiliferous in-situ siltstone block was re-
covered above the upper Asturian Hub coal seam, Sydney 
Coalfield, in a developing open pit. The block measures 30 × 
40 × 7 cm (Fig. 2a) and weighs 22 kg.  Its accession number 
in the Palaeontological Collection of Cape Breton Uni-
versity, Sydney, Nova Scotia, Canada is 08-10/15-9. The 
block was systematically deconstructed, and a careful record 
of the process was kept. The megascopic analysis showed 
that abscised foliage of the tree fern Linopteris obliqua 
(Bunbury 1847) Zeiller 1899 (Zodrow and McCandlish 
1978; Zodrow et al. 2007) was the overwhelmingly domi-
nant compression fossil present, numbering in the thou-
sands. Interestingly, Bunbury (1847, p. 427) commented on 
the abundance of this species in the Sydney Coalfield and its 
absence in American and European collections.

Two fragmentary amber samples were found. Sample 
8-10/15-9 13 is a droplet 3 mm across and weighing ca. 5
mg (Fig. 2b, arrow). Enlarged 30 times (Fig. 2c), it shows
micrometre-scale brownish-red grains under reflected light
and no inclusions. The droplet is encased in a dark-coloured

rim, ca. 130 μm wide, that appears to have a different 
composition than the surrounding shaly matrix. The other 
amber sample is a composite specimen, 08-10/15-9 2, 
consisting of three fragments, each 3–4 mm in size (Fig. 2d). 
In contrast with the previous sample, these fragments are 
translucent, darkish in colour, and inclusion-free. The spatial 
relationship on these fragments in the block is unknown.

Methods

   After megascopic observations and careful isolation of the 
amber, the samples were analyzed by the Fourier transform 
infrared spectroscopy (FTIR) technique. This technique has 
long been proven helpful in investigating the source of 
amber, especially of Cretaceous and younger age 
(Langenheim and Beck 1965). For FTIR analysis, both 
amber samples (8-10/15-9 13 and 08-10/15-9 2) were 
analyzed on a Nicolet 6700 instrument equipped with a 
DTGS detector. Three FTIR spectra were obtained from the 
lighter coloured amber droplet (8-10/15-9 13), and three 
spectra from the darker coloured fragments (08-10/15-9 2, 
one spectrum from each fragment). For these analyses, a 
small amount of amber was mixed with finely ground KBr 
(the resin accounting for ca. 2 wt.% of the mixture) to form 
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Figure 1. Location map and coal stratigraphy. (a) Regional. (b) Carboniferous basins and sub-basins in Atlantic Canada. 
(c) Coal stratigraphy. Amber samples (S) described in this study occurred approximately 5 m above the Upper Asturian
Hub coal seam of the Sydney Sub-basin. Cant. = Cantabrian age.
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a KBr pellet. Spectra were obtained in reflectance mode at a 
resolution of 4 cm-1 and 400 scans were collected per 
analysis. The IR signal was recorded in the region of 400 to 
4000 cm-1 wavenumber. IR bands were identified by com-
parison with published assignments (e.g., Painter et al. 1981; 
Wang and Griffith 1985; Goodarzi and McFarlane 1991; 
McFarlane et al. 1993). The following three ratios of the integra-
tion-band areas (Table 1) were calculated: CH2/CH3, Ox1, and 
Al/1035. The CH2/CH3 ratio was calculated in the 2800–

3000 cm-1 aliphatic stretching region after band de-
convolution, and two bands (CH2 at 2925 and CH3 at 
2960 cm-1) were used in calculation, following our previous 
procedures (e.g., Lis et al. 2005). Ox1 is a ratio of the C=O + 
C=C bands in the 1500–1800 cm-1 region to the bands in 
the aliphatic stretching region (2800–3000 cm-1), and Al/1035 
is a ratio of the bands in the aliphatic stretching region (2800–
3000 cm-1) to the band with the peak at 1035 cm-1.

Figure 2. Documentation of amber in the Carboniferous, Sydney Coalfield, Nova Scotia, Canada. (a) amber-bearing block 
showing abundant compression pinnules of Linopteris obliqua (Bunbury 1847) Zeiller 1899 (accession number 08-10/15-9 
13). (b) Bright in situ droplet, arrowed, in association with compression pinnules (sample 8-10/15-9 13. (c) The bright 
granular amber droplet itself. (d) The dark, dense, and transparent amber pieces (sample 08-10/15-9 2).
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Table 1. FTIR derived ratios of the amber samples.

Analysis CH2/CH3 Ox1 Al/1035

1.36 0.18 0.40

1.18 1.09 3.12

1.50 0.39 1.60

8-10/15-9-13 analysis 1

8-10/15-9-13 analysis 2

8-10/15-9-13 analysis 3

Average 1.35 0.56 1.71

1.27 0.54 0.38

1.32 0.53 0.07

1.42 0.77 0.88

08-10/15 9 2 - fragment 1

08-10/15 9 2 - fragment 2

08-10/15 9 2 - fragment 3

Average 1.34 0.61 0.44

CH2/CH3 was calculated after band deconvolution in the 2800–3000 cm-1

region; Ox1 is a ratio of the bands in 1500–1800/2800–3000 cm-1 and Al/
1035 uses intergration areas of 2800–3000 cm-1 bands.

RESULTS

The FTIR spectra of both amber samples are dominated 
by aliphatic hydrogen bands in the stretching 2800–3000 cm−1 
region and the 1300–1500 cm-1 aliphatic bending region, 
and have a broad band with the peak at ~1035 cm-1 (Figs. 3–
4). The latter band could come from v(SO) undissociated 
sulphonate groups that were detected in some resins 
(Edwards et al. 2000); but more likely it represents C-O 
stretching bands (like those in lignin). Oxygenated groups 
and aromatic carbon bands in the 1500–1800 cm-1 region 
are distinct, but their intensity is not large relative to 
aliphatic hydrogen bands. Small bands in the 700–900 cm-1 
region also occur, as do two prominent bands at 537 and 
470 cm-1 of an unassigned nature. It is interesting that bands 
representing exomethylene (CH2) groups in diterpenoid 
form with peaks at ~3082, 1644, and 887 cm-1, characteristic 
of many fossilized resins (Streibl et al. 1976; Poinar and 
Mastalerz 2000) were not recorded in the amber studied 
here (Figs. 3–4).

Qualitative comparison between spectra of the two amber 
samples (8-10/15-9 13 and 08-10/15-9 2) reveal close 
similarities between the functional-group distribution and 
their relative proportions (Figs. 3–4), and the difference 
between the two samples are not more distinct than within-
sample differences. While three splits of sample 8-10/15-9 
13 are very similar (Fig. 3), in sample 08-10/15-9 2 
composed of three fragments (Fig. 4), one fragment has very 
reduced aliphatic bands (both in 2800–3000 and 1300–1500 
cm-1) and the band with the peak at ~1037 cm-1 was do-
minant; it is likely that this fragment has significant lignin
content.

This functional-group similarity between the two amber 
samples is also supported by semiquantitative ratios (Table 
1). CH2/CH3 ratios range from 1.18 to 1.50 between 
individual analyses, with a very similar average values of 
1.34 and 1.35 for the two samples, suggest similarity in the 
length and branching of aliphatic chains (e.g., Lin and Ritz 

Figure 4. FTIR spectra of three fragments of sample 
08-10/15-9 2 (Fig. 2d).

Figure 3. FTIR spectra of the amber droplet shown in 
Figure 2c. The three spectra represent three splits of 
sample 8-10/15-9 13.
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Therefore, documenting the association of the studied am-
ber with an arborescent seed fern is an important aspect of 
this study. It is well known that resins are produced by 
almost all modern conifers and many angiosperms. So far, 
the earliest evidence of fossil resin comes from the Late 
Carboniferous with arborescent cordaitaleans (early rela-
tives of conifers) or from seed ferns suggested as source 
plants (Langenheim 2003). In this study, the occurrence of 
the amber in association with huge quantities of abscised 
medullosalean seed-fern foliage Linopteris obliqua indicates 
that seed ferns were also able to utilize the biosynthetic 
mechanisms to produce resin exudates.

In their py-GC/MS study of Carboniferous amber from 
an Illinois Basin coal seam ~320 million years old, Bray and 
Anderson (2009) suggested that the amber had Class I 
(polylabdanoid) characteristics, similar to that produced by 
a wide variety of modern species. In contrast, Crelling and 
Kruge (1998), in their study of resinite from a different 
Illinois Basin coal seam revealed predominantly aliphatic 
character (straight chain hydrocarbons), with only minor 
alkylbenzenes and phenols, characteristic of a cross-linked 
aliphatic biogeopolymer. They further concluded that these 
Carboniferous resinites differed from typical Cretaceous or 
younger resinites in their chemistry: the Cretaceous resinites 
were composed mainly of aromatized and unsaturated 
cadinanes, small aromatic molecules and isoprenoid 
hydrocarbons, characteristic of polycadinane structure. In 
the present study, we analyzed the chemistry of functional 
groups and it is therefore difficult to make direct com-
parison with the py-GC-MS compound data of Bray and 
Anderson (2009) or Crelling and Kruge (1998). However, 
the comparison of functional-group distribution of the 
studied amber to the younger ambers and modern resin 
from the other areas (Fig. 5) reveal two main differences: (1) 
the absence of oxygenated group bands around 1700 cm-1 
in the Carboniferous amber studied; this band is very pro-
minent in Miocene ambers and in modern Agathis resin 
(Fig. 5), as well as in Cretaceous ambers from Canada 
(McKellar and Wolfe 2010); and (2) the presence of a 
distinct 1580 cm-1 band in the Carboniferous amber; this 
band, likely represents aromatic carbon and does not occur 
in the spectra of other ambers. Van Bergen et al. (1995) also 
mentioned the unusual chemistry of Carboniferous resin 
rodlets, dominated by (alkyl)naphtalenes, alkylbenzenes, and 
phenols.

For now it is difficult to conclude whether these diff-
erences are related to the original chemistry of the resin or 
are the result of more a advanced maturation processes for 
the Carboniferous resin. Clifford and Hatcher (1995a, b) 
found that, with increased maturation from lignite to 
subbituminous coal, fossil resins showed depletion in exo-
methylene groups and increase in alkylnaphtalenes. The coals 
associated with the amber studied are of high volatile bit-
uminous rank (Ro % 0.64–0.66 %), and the reduction in 
oxygenated groups and the absence of exomethylene groups, 
at least to some extent, may be related to their more ad-
vanced maturation.

1993). Ratio Ox1 is dependent on the relationship between 
the oxygenated plus aromatic carbon groups and aliphatic-
hydrogen bands and usually reflects the oxidation level of 
the organic matter: CH2 and CH3 are known to be 
consumed during oxidation, with C=O groups being 
formed (Kister et al. 1988; Vasallo et al. 1991; Pradier et al. 
1992). Following this interpretation, darker amber 08-10/15 
9 2 would be on average slightly more oxidized compared to 
amber 8-10/15-9 13, as reflected by a higher Ox1 value of 
0.61 compared to 0.56 in the latter (Table 1). In their study 
of the amber from Dominican Republic, Poinar and 
Mastalerz (2000) noted that the increase in oxidation/
weathering was associated with a change from lighter to 
darker colour, an observation that seems to be supported in 
the present study. The main difference between the two 
amber samples is in the Al/1035 ratio, which is greater for 
the 8-10/15-9 13 sample, mainly because of significantly 
smaller absorbance of the bands with the peak at ~1035–
1037 cm-1 (likely coming from lignin) relative to the 
aliphatic stretching bands in this sample.

DISCUSSION AND CONCLUSIONS

Our discovery of Carboniferous amber expands the in-
ventory of amber to as old as ~  300 million years, and thus 
beyond that documented from Desmoinesian coal seams in 
Illinois (Bray and Anderson 2009). As those authors con-
cluded, such early occurrences of amber demonstrate that 
pre-conifer gymnosperms were able to utilize the bio-
synthetic mechanisms to produce resins well before the 
onset of angiosperms, which are considered to be one of the 
main group of resin producers (Langenheim 2003). In fact, 
the development and utilization of these mechanisms by 
Carboniferous plants is indicated by the occurrence of 
maceral resinite (fossil resin) in Carboniferous coals, and by 
the presence of medullosalean seed-fern resin in Penn-
sylvanian coal balls (C. Eble, written communication 2022). 
Crelling and Kruge (1998) separated resinite from the 
Pennsylvanian Herrin Coal in Illinois and argued that its 
properties differed from those of Cretaceous and younger 
resins. The petrographic properties of Carboniferous resin-
ites (Crelling 1995) are, however, similar to those of younger 
resins, and older resins likely served similar botanical 
functions to those of younger plants for example, sealing 
and protecting wounds and repelling insects (Langenheim 
2003). In the Carboniferous sedimentarty rocks, however, 
the resins are of small, typically microscopic size and, unlike 
the younger resins, megascopic “amber-size” occurrences 
are extremely rare (e.g., Grimaldi 2009). The very rare and 
small occurrences of amber and resinite in Carboniferous 
sedimentary rocks suggest that only limited types of plants 
then had the ability to utilize biosynthetic mechanisms to 
produce resins.

Identification of the parent plants of ambers is often im-
possible because ambers often occur isolated and in 
dissociation from the source plant (Langenheim 2003).
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